
Department of Psychology and Cognitive Science

Department of Information Engineering and Computer Science

Master’s Degree in
Human-Computer Interaction

AUTOMATIC CLASSIFICATION OF
THE PERCEPTION OF ARABS ON
MIGRATION TO EUROPE USING

SOCIAL MEDIA MONITORING AND
NATURAL LANGUAGE PROCESSING

Supervisors Student
Prof. Sara Tonelli
Prof. Massimo Zancanaro

Mohamad Baalbaki

2019-2020

Abstract

Arab influx to Europe continues to rise day by day, but Arabs’ perceptions of it as a
migration destination remains unclear to the world. Despite the fact that the exact number
of Arabs in Europe is unknown, the scarce research that exists shows that it currently
hovers around 6 million, slightly more than the entire population of Denmark. This study
aimed to utilize Social Media Monitoring and Natural Language Processing to explore
the possibility of creating a computer program that will be able to classify if a tweet in
Arabic is: unrelated to, in favor of, or against migration to Europe. In simpler words,
it answered the following question: Can a computer program identify if Arabs have a
positive or negative perception on migration to Europe? In this context, a perception is
defined as the individual’s stance on this topic. A positive perception signifies that they
find Europe as a favorable place to migrate to and a negative perception signifies that
they express an aversion to migration to Europe. Knowing that data is a driving force for
computer programs with machine learning applications, the collection and analysis of a
substantial amount of relevant Arabic tweets provided us with an accurate insight on the
former hypothesis. Consequently, based on a literature review on social media monitoring
and stance detection, a Twitter crawler was used to collect and store Arabic tweets based
on keywords related to migration to Europe. These tweets were then filtered by eliminating
retweets and partially copied tweets, and used to create a dataset with 3527 tweets. Each
tweet was manually annotated with 1 if it conveyed a positive perception on migration
to Europe, 0 if it conveyed a negative perception and -1 if the tweet was either news or
unrelated. After training our machine learning algorithms on the aforementioned tweets,
the most optimal approach was the Soft Voting Classifier with an overall classification
accuracy of 62.32%. Our algorithm determined that Arabs carry a negative perception
on migration to Europe. Despite the fact that we believe our results were fair and above
average, we assert that further research is needed with much more data paired up with Deep
Learning algorithms. Such an approach might drastically improve classification quality and
consequently yield a more accurate perception.

Acknowledgements

I would like to deeply thank my supervisors: Professor Sara Tonelli and Professor Massimo
Zancanaro for their support and transfer of knowledge during the period of my thesis. They
have been of great help to me throughout these couple of months. In addition to that, I
would like to thank "Fondazione Bruno Kessler" for the opportunity they have given me
both for my internship and for my thesis. My skills flourished under the guidance of their
professionals.

I thank my parents, siblings and my aunt for their hard work these years to try to lift
me up and help me become the best version of myself. I will never be able to pay them
back for what they have provided me. They have my utter respect and a million thank
yous to them would never be enough.

My deepest gratitude goes to my girlfriend Martina for her constant support, both
academically and emotionally. We had some tough times together, some ups and downs,
it was a roller coaster but even in the worst of times, she didn’t give up on me and she
kept pushing me to become better.

One of the key people I would like to thank is my best friend Adeen. He’s always had
my back, guiding and supporting me in my quest to finish my master’s, as well as in other
personal matters. Since we’ve had parallel lives, his words and advice will always be of
great value to me.

A particular thank you goes to the Italian Government as if it wasn’t for them, I
wouldn’t be here. The scholarship they gave me helped me spread my wings and fly to the
largest professional services network in the world: Deloitte. If it wasn’t for Italy, I don’t
think I would have ever dreamt of getting employed in such a company. Thus, I would like
to emphatically say: GRAZIE ITALIA!

The biggest thank You goes to God. My faith in You has never and will never tremble.
I thank You for every blessing You have given me. Therefore, I would like to start my
thesis by saying:

Õ
�
æ

k�

��QË @ 	á�
�
Ô

�
g��QË @ é� �

��
ÊË @ Õ

�
æ
�
��.�

Contents

1 Introduction 6

2 Literature Review 8

3 Corpus Collection and Dataset Creation 10
3.1 Social Networking Platform Selection . 10
3.2 Keyword Selection . 10
3.3 Tweet Crawling . 12

3.3.1 Pre-filtering . 12
3.3.2 Peri-filtering . 12
3.3.3 Post-selection of our Filtering Strategy 13

3.4 Dataset Creation . 14
3.4.1 Variable Selection Rationale . 14

3.5 Dataset Annotation . 15
3.5.1 Annotation Guidelines . 15
3.5.2 Cohen’s Kappa Coefficient Calculation 17

4 Machine Learning Approaches for Tweet Classification 21
4.1 Support-Vector Machines . 21

4.1.1 Preliminary Phase with Tweet Pre-processing 21
4.1.2 K-Fold Cross-Validation . 24
4.1.3 Hyperparameter Tuning using Grid Search Cross-Validation 26
4.1.4 Further Tweet Pre-processing . 27
4.1.5 K-Fold Cross-Validation . 29
4.1.6 Hyperparameter Tuning using Grid Search Cross-Validation 31
4.1.7 Splitting Hashtags . 31
4.1.8 K-Fold Cross-Validation . 32
4.1.9 Hyperparameter Tuning using Grid Search Cross-Validation 32
4.1.10 K-Fold Cross-Validation with 2 Classes: 0 and 1 33
4.1.11 Hyperparameter Tuning using Grid Search Cross-Validation with 2

Classes: 0 and 1 . 34
4.1.12 The 2 Classifiers Approach . 34
4.1.13 K-Fold Cross-Validation . 37
4.1.14 Hyperparameter Tuning using Grid Search Cross-Validation 38

4.2 Naïve Bayes . 39
4.3 K-Nearest Neighbors . 40

4.3.1 K-Fold Cross Validation . 40
4.3.2 Hyperparameter Tuning using Grid Search Cross-Validation 42

4.4 Random Forests . 43
4.4.1 K-Fold Cross-Validation . 44
4.4.2 Hyperparameter Tuning using Grid Search Cross-Validation 46

2

4.5 Logistic Regression . 47
4.5.1 K-Fold Cross-Validation . 47
4.5.2 Hyperparameter Tuning using Grid Search Cross-Validation 49

4.6 Voting Classifier . 50
4.6.1 Hard Voting . 51
4.6.2 Soft Voting . 51

5 Results and Error Analysis 54
5.0.1 Results . 54
5.0.2 Error Analysis . 56

6 Conclusion and Further Research 60

Bibliography 65

3

List of Figures

4.1 Visual Representation of the K-Fold Cross-Validation Approach
[Wikipedia, 2019] . 25

4.2 Vectorial Representations of the Tweets Before and After Cleaning: Red is
-1, Blue is 0 and Green is 1 . 29

4.3 Vectorial Representations of the Tweets Before and After Cleaning: Blue is
0 and Red is 1 . 33

4.4 Visual Representation of the 2 Classifiers Approach 35
4.5 Vectorial Representations of the Tweets Before and After Cleaning: Red is

-1 and Blue is 2 . 36
4.6 Visual Representation of the Learning Curve after K-Fold Cross-Validation 38
4.7 Visual Representation of the K-Nearest Neighbors Classifier [Wikipedia, 2007] 40
4.8 Visual Representation of the Random Forests Classifier [Medium, 2017] . . . 44
4.9 Visual Representation of the Logistic Regression Classifier in a Binary Clas-

sification Task [HelloAcm, 2016] . 47
4.10 Visual Representation of the Voting Classifier [Medium, 2019] 50

4

List of Tables

3.1 Arabic Keywords with their Corresponding English Translations 11
3.2 Detailed Information about the Crawls . 13
3.3 Snippet of the APME Dataset . 14
3.4 Annotations with the Total Matches and Disagreements before Adjudication 18
3.5 Examples of Differing Annotations with the Reasons Behind the Adjudications 19
3.6 Annotations with the Total Matches and Disagreements after Adjudication . 20

4.1 Report of the Results of the Preliminary SVM Approach 23
4.2 Report of the Results of the K-Fold Cross-Validation Approach 26
4.3 Report of the Results of the Grid Search Cross-Validation Approach 27
4.4 Report of the Results of the Secondary K-Fold Cross-Validation Approach

with the Best Hyperparameters . 30
4.5 Report of the Results of the Secondary Grid Search Cross-Validation Approach 31
4.6 Report of the Results of the Tertiary K-Fold Cross-Validation Approach

with the Best Hyperparameters and with Split Hashtags 32
4.7 Report of the Results of the Tertiary Grid Search Cross-Validation Approach

with Split Hashtags . 33
4.8 Report of the Results of the Quaternary K-Fold Cross-Validation Approach

with the Best Hyperparameters for Classes: 0 and 1 34
4.9 Report of the Results of the Quaternary Grid Search Cross-Validation Ap-

proach for Classes: 0 and 1 . 34
4.10 Report of the Results of the Quintenary K-Fold Cross-Validation Approach

for Classes: -1 and 2 . 36
4.11 Report of the Results of the Quintenary Grid Search Cross-Validation Ap-

proach for Classes: -1 and 2 . 37
4.12 Report of the Results of the K-Fold Cross-Validation Approach with the

Best Hyperparameters . 37
4.13 Report of the Results of the Grid Search Cross-Validation Approach 38
4.14 Report of the Results of the Gaussian Naïve Bayes Approach 39
4.15 Report of the Results of the K-Fold Cross-Validation Approach with the

Best Hyperparameters . 42
4.16 Report of the Results of the Grid Search Cross-Validation Approach 43
4.17 Report of the Results of the K-Fold Cross-Validation Approach with the

Best Hyperparameters . 46
4.18 Report of the Results of the Grid Search Cross-Validation Approach 47
4.19 Report of the Results of the K-Fold Cross-Validation Approach with the

Best Hyperparameters . 49
4.20 Report of the Results of the Grid Search Cross-Validation Approach 50
4.21 Report of the Results of the Hard Voting Classifier Approach 51
4.22 Report of the Results of the Soft Voting Classifier Approach 52

5.1 Report of the Results of all of the Machine Learning Approaches 55

5

Chapter 1

Introduction

Arab presence in Europe began in the Iberian Peninsula with the rise of the Umayyad
Caliphate in 711 AD [Afsaruddin, 2019]. They remained in Europe till this day, reaching
an estimated population of around 6 million individuals [for Migration, 2010] in 2020.
Their overall population has not been saturated yet, as the number of Arabs immigrating
to Europe is on the rise everyday, with this decade being flagged as "the decade of Arab
refugees" [Salameh, 2019]. Despite this continuous increase, to our knowledge there have
not been any studies to try to identify the perception of Arabs on migration to Europe
online in an automated manner. This is imperative as it would help us to better understand
the narratives that influence their aspirations to migrate, as well as some false expectations
that they might carry. Therefore, we believed that it is very interesting to try to see if it
is technically possible to identify this perception using Social Media Monitoring, Machine
Learning and Natural Language Processing. Despite the fact that there is constant a
influx of Arabs to Europe, our research has surprisingly shown that a combination of
the aforementioned techniques successfully identified an overall negative perception of
Arabs on migration to Europe mainly caused by: religious differences, political grudges
and economic inequalities between Arabs and Europeans. There have been few works on
stance detection [Krejzl et al., 2017] in Arabic that we got inspired by. They are briefly
explained below and with more detail in the Literature Review section.

[Baly et al., 2018] worked on stance detection for Arabic fact checking. They claimed
that if a set of tweets has already been manually annotated, better results can be achieved
when supervised learning techniques [Russell and Norvig, 2009] are used for stance pre-
diction. Thus, we got inspired by their work and we opted for supervised learning in our
study.

Another inspiring work was the one of [Soliman et al., 2014] on Sentiment Analysis
of Arabic Slang Comments on Facebook. Their use of Support-Vector Machines (SVM)
[Cortes and Vapnik, 1995] yielded an accuracy of 86.86%, therefore we started off by trying
SVM and then moved on to try other supervised learning algorithms.

The most interesting work for us was the one of [Alayba et al., 2017]. Their creation of
an Arabic dataset on health services after crawling tweets and their choice to test several
machine learning algorithms for sentiment analysis totally fit our vision. Instead, we opted
to try the same procedure but for the purpose of stance detection.

In our study, we carefully selected a total of 44 keywords related to Arab migration to
Europe. Using these keywords, we crawled tweets on a span of 3 months and we manually
annotated them as: -1 which means unrelated, 0 which means that the tweet conveyed
a negative perception on migration to Europe and 1 which means that it conveyed a
positive perception on migration to Europe. At first, we wanted to focus on tweets only
from Algeria, Egypt and Tunisia but we reverted from doing so after noticing that there
were scarce tweets geotagged with these countries. Therefore, we resorted to focus on all

6

tweets in Arabic regardless of their geolocation. We programmatically removed retweets
and partially copied tweets, and we kept only one instance of each set of similar tweets.
We incorporated the use of a second annotator and we calculated the inter-annotator
agreement and performed adjudication in order to enhance the quality of our annotations.
In addition to that, we created the first dataset for Arabs’ perceptions on migration to
Europe that we named "APME" Dataset. At that point we started pre-processing our
data and we tried out 6 different machine learning algorithms: Support-Vector Machines,
Naïve Bayes, K-Nearest Neighbors, Random Forests, Logistic Regression and the Voting
Classifier with 17 unique approaches for all of them that we mentioned in our "Machine
Learning Approaches for Tweet Classification" section. At the end of our crawls, we had a
total of 3527 tweets and we garnered a maximum overall classification accuracy hovering
around 62% , which was achieved by: Logistic Regression and the Voting Classifier (both
Soft and Hard approaches). After analyzing the misclassified tweets, we determined that
some of the reasons behind these errors could be justified by the use of dialectal Arabic and
by the use of metaphors. At the end of our research and based on our sample of tweets,
our algorithms finally detected that Arabs have a negative perception on migration to
Europe.

This thesis is divided into 6 sections: Section 1 is the Introduction. Section 2 describes
the literature of relevant works on stance detection in English and Arabic. Section 3
explains how we collected our corpus and created our dataset. Section 4 describes the
different pre-processing approaches and machine learning algorithms we used. Section 5
shows our results in details with error analysis. Section 6 concludes and outlines further
research.

7

Chapter 2

Literature Review

Stance detection is the automatic detection whether the author of a piece of text is in
favor of a given target or against it. Despite the fact that there are few works in Arabic
regarding that matter, the ones that were already accomplished have really paved the
way for further research. In our paper, we mentioned some interesting studies on stance
detection in English before shifting to stance detection in Arabic tweets.

[Mohtarami et al., 2018] worked on an English dataset for stance detection. They used
an end-to-end memory network [Sukhbaatar et al., 2015] for its ability to remember infor-
mation from previous paragraphs and to infer more accurately. Their network predicted
whether a corpus of text agrees with, disagrees with, discusses or is unrelated to a given
claim. In addition to that, it stored evidence for the inferences it has already made. They
integrated convolutional and recurrent neural networks [Goodfellow et al., 2016], as well as
a similarity matrix in order to handle noise. They achieved a weighted accuracy of 81.23%
in the Fake News Challenge [Masood and Aker, 2018].

Another important work on stance detection in English was the work done by
[Augenstein et al., 2016]. They used bidirectional LSTMs [Huang et al., 2015] with a con-
ditional encoding mechanism for stance detection in political tweets. Their results have
shown that conditional encoding is satisfactory when it comes to stance detection for un-
seen targets. In fact, they achieved the second best results on the SemEval 2016 Twitter
Stance Detection corpus [Mohammad et al., 2016].

[Riedel et al., 2017] used a multilayer perceptron [Murtagh, 1991] with one hidden
layer, in addition to lexical and similarity features. Despite the fact that they garnered
third place in the Fake News Challenge with an overall accuracy of 81.7%, their results
were quite misleading since their model was not very accurate at predicting the 2 most
important classes: "agree" and "disagree".

[Baly et al., 2018]’s work on stance detection for Arabic fact checking was the first of its
kind. They claimed that existing datasets in Arabic usually do not offer manual annotation
of supporting evidence. In addition to that, they mentioned that although evidence can
be automatically extracted through unsupervised techniques [Parikh et al., 2016], better
results can be achieved when supervised or semi-supervised techniques are used. They
mentioned that this can happen given a set of manually annotated tweets and that it
yields better stance prediction. Therefore, since we had the expertise needed to annotate
our data, we got inspired by their work and we opted for supervised learning.

[Darwish et al., 2017] improved on stance prediction for both Arabic and En-
glish. They built their study on the previous works of [Magdy et al., 2016,
Pennacchiotti and Popescu, 2011, Wong et al., 2013] that claimed that using users’ irrel-
evant previous tweets and retweets in regards to a certain topic can be used to identify
their stance on it. Therefore, they opted to compute similarities between users based on
their interaction patterns, hashtags and their retweets. Their results have shown significant

8

improvements in stance prediction for both languages.
Another significant related work was the one of [Soliman et al., 2014] on Arabic political

comments written in dialectal Arabic from Arabic news sites like: Al-Jazeera and BBC
Arabic. They used an SVM classifier for Arabic slang language to classify Arabic news
comments on Facebook as: satisfied or dissatisfied. They also created an Arabic dialectal
lexicon that they named: "Slang Sentimental Words and Idioms Lexicon" (SSWIL). They
achieved good results, with their SVM classifier yielding an overall accuracy of 86.86%.

The work of [Touati et al., 2017] on Arabic Opinion Summarization using machine
learning and more specifically Conditional Random Fields (CRF) [Lafferty et al., 2001]
was one of the first of its kind. They annotated opinions in news articles by focusing
on four categories: reporting, judgement, advice and sentiment. They used an arsenal
of different features such as: n-grams, linguistic and semantic information, in addition to
features that were specific to the Arabic language. They have shown the effectiveness of
using Conditional Random Fields for this problem.

One of the most inspiring studies for us was the study done by [Alayba et al., 2017].
They created an Arabic dataset on tweets related to health services and they named it:
"Arabic Health Services (AHS)" Dataset. Their aim was to run a machine learning algo-
rithm that will be able to accurately classify unseen tweets related to health services as
positive or negative. They tested several machine learning algorithms such as Naïve Bayes
[Webb, 2010], Support-Vector Machines [Cortes and Vapnik, 1995] and Logistic Regression
[Kleinbaum et al., 2002]. In addition to that, they also tried Deep Learning algorithms such
as Deep Neural Networks and Convolutional Neural Networks [Goodfellow et al., 2016]
with Word2Vec [Mikolov et al., 2013]. They collected tweets on a span of 6 consecutive
months to have their data eventually labeled by three annotators. After removing irrele-
vant tweets, they were left with an overall number of 2026 tweets in their dataset where
31% of the tweets were positive and the rest 69% were negative. Their highest scoring
classifier was SVM which yielded an overall accuracy of 85%.

Last but not least for works in Arabic, [Al-Smadi et al., 2018] used supervised
Machine Learning and Deep Learning approaches for aspect-based sentiment analysis
[Pontiki et al., 2014] of Arabic Hotel reviews. Their Machine Learning approach consisted
of using Support-Vector Machines (SVM), while their Deep Learning one consisted of us-
ing Recurrent Neural Networks (RNN). Both algorithms were trained by using different
features and were evaluated using a test set that contained 2291 reviews. Their results
have shown that SVM outperformed RNN in classification by yielding a whooping 95.4%
overall accuracy, while RNN scored 87%. It is important to state that RNN outperformed
SVM only in the execution time required for training and testing the models.

The last two works have shown that Machine Learning approaches yielded more accu-
rate results for classification tasks similar to ours. This can be explained by the relatively
small sizes of the datasets in these studies. Whenever there are less tweets, it is usually
better to resort to Machine Learning approaches such as Naïve Bayes and SVM rather than
Deep Learning approaches such as Recurrent Neural Networks. Consequently, we decided
to opt for Machine Learning algorithms instead of Deep Learning algorithms in our study.

9

Chapter 3

Corpus Collection and Dataset
Creation

3.1 Social Networking Platform Selection

The social networking platform we chose in order to get the data from is Twitter
[Murthy, 2018]. It is one of the most used micro-blogging platforms in the world and it
is often used by people to express their opinions publicly [Stieglitz and Dang-Xuan, 2013].
It has long been an attraction for researchers because of its enormous number of textual
information that grows everyday [Pak and Paroubek, 2010]. In addition to that, it is ex-
tensively used for its research on user intentions [Java et al., 2007]. We refrained from
using Facebook because of its privacy restrictions and limited API that prevent us from
collecting large amounts of data [Facebook, 2020]. On the other hand, Twitter’s API allows
developers to access much more data with less limitations [Twitter, 2020].

3.2 Keyword Selection

The importance of keyword selection for text mining has been highlighted in many stud-
ies [Cheong et al., 2011, Clifton et al., 2004, Li et al., 2009]. Therefore, it was of crucial
importance to choose relevant keywords that will render quality tweets for our Machine
Learning models. The language we chose to search for keywords in is Arabic since it is
the native tongue of Arabs. It is important to specify that we are native Arabic speakers,
thus no professional linguistic assistance in this language was needed. Furthermore, our
choice of Arabic keywords guaranteed picking up tweets written in dialectal Arabic which
enriched our collected data. From now on, every time we introduced an Arabic word or
sentence, we used the implication symbol "=>" paired up with the sentence’s English
translation so that non-Arabic speaking readers can understand.
Since this entire topic revolved around the two concepts of "Migration" and "Europe",
we started by selecting the lemmas " �

èQj. ë" => "Migration" and " AK. ðPð

@" => "Europe"

and we combined them to create the base keyword " AK. ðPð

@

�
èQj. ë" => "Migration Europe".

We derived other keywords from our base keyword by combining "Europe" with the syn-
onyms, derivations, singular and plural forms of "Migration" in Arabic to create unbiased
and independent keywords. We tested all the keywords manually on Twitter to verify if
they would yield a substantial amount of quality tweets. At the end of our testing, only
44 keywords survived and were chosen. These keywords along with their corresponding
English translations are shown in Table 3.1.

10

Keywords English Translation

AK. ðPð

@ hð 	Q

	
K , AK. ðPð

@ H. @Q

�
�

	
«@

, AK. ðPð

@

�
èQj. ë Immigration Europe

AK. ðPð

@ hð

	Q 	
�Ë @ , AK. ðPð

@ H. @Q

�
�

	
«B

@ , AK. ðPð

@

�
èQj. êË @ The Immigration Europe

AK. ðPð

@ Zñm.

Ì Asylum Europe

AK. ðPð

@ Zñj. ÊË @ The Asylum Europe

AK. ðPð

@ h 	PA

	
K , AK. ðPð

@ H.

Q�
�

	
ªÓ , AK. ðPð

@ Qk. AêÓ Immigrant Europe

AK. ðPð

@ h 	PA

	
JË @ , AK. ðPð

@ H.

Q�
�

	
ªÖÏ @ , AK. ðPð

@ Qk. AêÖÏ @ The Immigrant Europe

AK. ðPð

@ úk

.
B Asylum Seeker Europe

AK. ðPð

@ úk

.
CË@ The Asylum Seeker Europe

, AK. ðPð

@ 	áK
Qk. AêÓ , AK. ðPð

@ ðQk. AêÓ , AK. ðPð

@

	
àðQk. AêÓ Immigrants Europe

, AK. ðPð

@ ñK.

Q�
�

	
ªÓ , AK. ðPð

@

	
àñK.

Q�
�

	
ªÓ , AK. ðPð

@ ø

Qk. AêÓ

, AK. ðPð

@

	
àñk 	PA

	
K , AK. ðPð

@ ú

G
.
Q�
�

	
ªÓ , AK. ðPð

@

	á�
K.
Q�
�

	
ªÓ

AK. ðPð

@ ú

k 	PA

	
K , AK. ðPð

@

	á�
g
	PA

	
K , AK. ðPð

@ ñk 	PA

	
K

, AK. ðPð

@

	
àñK.

Q�
�

	
ªÖÏ @ , AK. ðPð

@ 	áK
Qk. AêÖÏ @ , AK. ðPð

@

	
àðQk. AêÖÏ @ The Immigrants Europe

AK. ðPð

@

	á�
g
	PA

	
JË @ , AK. ðPð

@

	
àñk 	PA

	
JË @ , AK. ðPð

@

	á�
K.
Q�
�

	
ªÖÏ @

AK. ðPð

@ ú

æk. B , AK. ðPð

@

	á�

Jk. B , AK. ðPð

@ ñ

Jk. B , AK. ðPð

@

	
àñ

Jk. B Asylum Seekers Europe

AK. ðPð

@

	á�

Jk. CË@ , AK. ðPð

@

	
àñ

Jk. CË@ The Asylum Seekers Europe

AK. ðPð

@ Zñm.

Ì �
èQj. ë Immigration Asylum Europe

AK. ðPð

@ Zñj. ÊË @

�
èQj. êË @ The Immigration The Asylum Europe

AK. ðPð

@

�
éJ
«Qå

�
� Q�

	
«

�
èQj. ë Illegal Immigration Europe

AK. ðPð

@

�
éJ
«Qå

�
�Ë @ Q�

	
«

�
èQj. êË @ The Illegal Immigration Europe

Table 3.1: Arabic Keywords with their Corresponding English Translations

Despite the fact that Twitter is a nurturing environment for hashtags
[Bruns and Burgess, 2011], we did not use any because the keywords we chose al-
ready cover the hashtags that contain the same words. For explanatory purposes, we used
"*" to denote a sequence of 0 or more non-connecting Arabic letters or random characters
including spaces and numbers.
The keyword " AK. ðPð

@ Zñm.

Ì" => "Asylum Europe" already covers itself plus 0 or more

additions as demonstrated: "* AK. ðPð

@* Zñm.

Ì*" => "*Asylum*Europe*". In addition to that,
it covers the following collections of hashtags where the order of the words can be permuted:

• "* AK. ðPð

@*#* Zñm.

Ì*#" => "#*Asylum*#*Europe*"

• "* AK. ðPð

@* Zñm.

Ì*#" => "#*Asylum*Europe*"

• "* AK. ðPð

@*#* Zñm.

Ì*" => "*Asylum*#*Europe*"

We refrained from writing the permutations of these keywords since they render the same

11

results from Twitter’s API. Hence, "* AK. ðPð

@*#* Zñm.

Ì*#" => "#*Asylum*#*Europe*" is

the same as "* Zñm.
Ì*#* AK. ðPð

@*#" => "#*Europe*#*Asylum*".

Our keyword selection technique helped us to reduce the number of chosen keywords, and
consequently helped in diminishing the probability of having repetitive tweets.

3.3 Tweet Crawling

3.3.1 Pre-filtering

After choosing our 44 keywords, we started running our crawler every 8 days to collect
tweets not on coinciding days since Twitter’s API picks up tweets for a maximum of 7 days
back.

• First Crawl: 25th of September 2019
Gathered a total of 1890 tweets.

• Second Crawl: 3rd of October 2019
Gathered a total of 1919 tweets.

At the end of our second crawl, we gathered an overall number of 3809 tweets. This
is slightly more than 3000 tweets, which is the recommended number proposed by
[Sidorov et al., 2012] in their study on Machine Learning approaches for opinion mining in
tweets.

3.3.2 Peri-filtering

Geo-Location Filtering Tentative with Retweet Removal

Once we gathered a good amount of tweets, we wanted to focus on the 3 predominant
nations that migrate to Europe: Algeria, Egypt, Tunisia [Fargues and Fandrich, 2012,
Forin and Healy, 2018]. We initially decided to filter tweets via geolocation and only keep
the ones that were geotagged with these countries. In addition to that, we noticed that
a substantial amount of our data was from retweets. This was not very favorable for us
since they could have tampered with our statistics because of their duplicate annotations.
Therefore, we decided to filter via geolocation and to remove retweets all while maintaining
an overall number of tweets higher than 3000.
After programmatically removing retweets, only 45 tweets out of a total of 3809 tweets
remained, thus there was a whooping 98.81% loss of tweets. After further investigation,
it turned out that there was an extremely scarce number of geotagged tweets with the
aforementioned countries. A viable reason to explain this scarcity could be that tweets
are not often geotagged in general [Li et al., 2018]. Therefore, we decided to refrain from
filtering via geolocation and to focus on all tweets in Arabic while removing retweets. After
applying this procedure, we were left with an overall number of 722 tweets instead of 45
tweets.

Retweets and Repetitive Tweets Removal via Levenshtein Distance

After we overcame the aforementioned mishap, we ran our third crawl.

• Third Crawl: 10th of October 2019
Gathered a total of 2117 tweets.

Upon the removal of retweets from these 2117 tweets, we were left with 300 tweets in this
crawl and an overall number of 1022 tweets. At that point, we noticed that there were

12

similar tweets that were partially copied and not retweeted. For example:

• Tweet 1:

" �
éJ
«Qå

�
�Ë @ Q�

	
«

�
èQj. êË @

�
éêk. @ñÓ úÍ@

AK. ðPð

@ ÈðX ñ«YK
 ú

æ�

	
�Q

	
®Ë @ ��

KQË @"

=> "The French president calls European nations to face illegal immigration".

• Tweet 2:

¨AÒ
�
Jk. @ I.

�
®«

�
éJ
«Qå

�
�Ë @ Q�

	
«

�
èQj. êË @

�
éêk. @ñÓ úÍ@

AK. ðPð

@ ÈðX ñ«YK
 ú

æ�

	
�Q

	
®Ë @ ��

KQË @"

"É¿Q�
Ó CJ
m.
�

	
'

@

�
éJ

	
K AÖÏ

B@

�
èPA

�
�

�
��ÖÏ @

	á�
K. ð é
	
J�
K.

=> "The French president calls European nations to face illegal immigration after a
meeting between him and the German chancellor Angela Merkel".

These types of repetitions could have been problematic in the annotation phase of our
dataset since we would have duplicate annotations for semantically similar tweets. There-
fore, we decided to remove these repetitions all while keeping one tweet for each set of
similar tweets. In order to do so, we used the Levenshtein distance algorithm for string
similarity [Levenshtein, 1966] to identify similar tweets. After manually testing different
thresholds, we finally chose a similarity threshold of 0.5 because we found that it yielded
satisfying results for similarity in Arabic tweets. All but 1 tweet with a Levenshtein dis-
tance greater than 0.5 were considered as similar tweets and were removed.
While running this algorithm on our 722 tweets, 157 tweets were identified as being similar
tweets and 156 of them were consequently deleted. Therefore, we were left with an overall
number of 865 unique tweets without any retweets or repetitions.

3.3.3 Post-selection of our Filtering Strategy

Since we were left with unique tweets, we considered our filtering strategy of retweets and
similar tweets removal using Levenshtein’s algorithm as the final filtering strategy that we
used till our last crawl. The following table 3.2 shows all of the crawls we performed after
selecting our filtering strategy, with the relevant information for each one:

Crawl Date of
Crawl

Crawled
Tweets

Removed
Retweets

Removed
Similar
Tweets

Total Number
of Removed
Tweets

Remaining
Tweets in
this Crawl

Previous Total
Number
of Tweets

TOTAL

4th 21/10/2019 1820 1270 80 1350 470 865 1335
5th 30/10/2019 1618 1222 89 1311 307 1335 1642
6th 07/11/2019 1082 803 58 861 221 1642 1863
7th 15/11/2019 2406 1929 190 2119 287 1863 2150
8th 27/11/2019 1643 1315 49 1364 279 2150 2429
9th 05/12/2019 1632 1296 50 1346 286 2429 2715
10th 13/12/2019 1254 952 42 994 260 2715 2975
11th 21/12/2019 1024 698 49 747 277 2975 3252
12th

(Final) 30/12/2019 1411 1055 81 1136 275 3252 3527

Table 3.2: Detailed Information about the Crawls

13

3.4 Dataset Creation

Shortly after our third crawl, thus after we collected 865 tweets, we created the first dataset
for Arab’s perceptions on migration to Europe that we named: "Arabs’ Perceptions on
Migration to Europe (APME)" Dataset.

3.4.1 Variable Selection Rationale

Inspired by [Nabil et al., 2015]’s "Arabic Sentiment Tweets Dataset", we chose their same
structure but we disregarded the tweets’ English translations. Instead, we opted to add
the tweet ids and locations. The variables we chose are:

1. Tweet ID: We chose to include the tweet ids in the dataset because according to
Twitter’s terms and conditions, if a dataset is to be published, one cannot include
the tweets in the dataset. They can only include the tweets’ respective ids for confi-
dentiality reasons, as users have the right to delete their tweets without having them
stored in a dataset.

2. Tweet: We included the tweets in the dataset to ease the annotation process, but it
is imperative to mention that they are to be removed in case of any publication.

3. Location: We decided to include the location in the dataset in case we opt to iden-
tify the prevailing countries in which there are positive or negative perceptions on
migration to Europe in the future.

4. Annotation: The last and most important variable we chose to include was the
annotation which corresponds to the stance of a person on a certain tweet. This
variable governed the entire quality of our final classifications. The following section
clearly explains how we annotated the tweets by providing the guidelines that we
followed in order to do so. In addition to that, table 3.3 shows 3 tweets that were
annotated as 3 different classes. The translation column was not actually included
in our final dataset, but it was shown in the table just to explain the Arabic tweets
to non-Arabic speaking readers.

Tweet ID Tweet Translation Location Annotation

XYZ
I. »Q

	
K

�
I

	
J» PY

�
®

	
K ñË Õæ

	
¢ªË@ é<Ë @ð

AK. ðPð@ úÍ@ H. PA
�
¯ Èð@

I swear if I was able, I would
hop on the first ferry to Europe Libya 1

X’Y’Z’

�
éª

	
KA� éJ
ë AK. ðPð

@

�
I

	
KA¿ @

	
X @

Ñ«X ú

	
¯ ¼PA

�
�

�
�ë ø

@ 	P@ éÓ 	PB@

	á�

Jk. CË@

If Europe was the creator
of the crisis, then how will
it contribute in supporting
refugees?

Egypt 0

X”Y”Z”

	áK
Qk. AêÖÏ @ XY« :
�
èYj

�
JÖÏ @ Õ×

B@

¡�ñ
�
JÖÏ @ QjJ. Ë @ ú

	
¯ ú

�
¯Q

	
ªË @

ÐAªË @
�
éK
 @YK.

	
Y

	
JÓ

	
Ë

B@ 	PðAm.

�
�
'

United Nations: The number
of migrants that drowned
in the Mediterranean sea
exceeded a thousand since
the beginning of the year

Europe -1

Table 3.3: Snippet of the APME Dataset

14

3.5 Dataset Annotation

3.5.1 Annotation Guidelines

Drawing inspiration from [Mohammad et al., 2017]’s work, we created annotation guide-
lines of our own that were given to another annotator at a later stage. It is important to
mention that the following guidelines served as the benchmark for our annotation strategy:

• Annotate with 1 if the subject of the corresponding tweet either explicitly or implicitly
conveys a PERSONAL OPINION that yields a POSITIVE perception on migration
to Europe or any specific European country (applies anywhere we mention Europe
below). This positive perception can be interpreted as the following:

1. The subject of the tweet either implicitly or explicitly portrays Europe or migration to
Europe in a favorable/desirable way, as in they give a positive image about Europe.
Example:

AÖÏð H. Am.
�

	
'

B@ úÎ« @ñªj.

�
��
K. �ºªËAK. ÉK. A¾K
QÓ@ð AK. ðPð

@ ú

	
¯ ø

X

	á�

	
K @ñ

�
®Ë@ 	á« ©Ò�

�
� AÓ ¼QÔ«"

	á�

	
K @ñ

�
®K.

�
IËA

�
JË @ ÕË AªË @ ÈðX 	áÓ è

	Q�
Ò
�
JÖÏ @ éÊÓAªË@ ø

XAK

B@ É¿ @ñJ.j��
K. H. AJ.

�
�Ë@ X@Y«@ ÑëY

	
J« É

�
®J
K.

" 	á�

	
®Ê

	
j

�
JÓ É

	
�

	
®

	
K A

	
Jk@ð éÒ

�
®Ë@ úÎ« @ñÊ

	
�

	
®K

	
àA

�
�« è

	Q�
ÜØ èQj. ë

=> "You never hear about these laws in Europe, nor in the United States. On the
contrary, they encourage people to have children and when their number of youth
decreases, they start pulling all of the special workforces from all over the third world
with nifty migration laws in order to stay on top while we stay retarded".

2. The subject of the tweet either implicitly or explicitly expresses a desire on migrating
to Europe, or helps someone by giving advice on migration to Europe, or mentions
that Arabs want to migrate to Europe because of its advantages (portrays Europe as
a sought after/advantageous destination).
Example:

" AK. ðPð@ úÍ@
�
èQj. êË @ ú

	
¯Yë

Cë , é<Ë @ð ù

Òë Q

	
k@

�
H@ 	PA

	
®kð XBð@

	
¬Q

�
®ËAK. A

	
KYK. ñ

�
� ú

	
æªK
"

=> "Why should we care about this disgust? I swear that I do not care at all about
kids and diapers. My only concern is to migrate to Europe".

• Annotate with 0 if the subject of the corresponding tweet either explicitly or im-
plicitly conveys a PERSONAL OPINION that yields a NEGATIVE perception on
migration to Europe. This negative perception can be interpreted as the following:

1. The subject of the tweet either implicitly or explicitly justifies Europe’s problems by
mentioning that it is because of migration and that migrants are “invading Europe”
and that they are the reason behind these problems (portrays a negative image about
Europe).
Example:

XðYg úÎ« éËðX ÑêË ÉÒª
�
K Ðñ

�
®
�
K

	á�

Jk. CË@ ¨ñ

	
�ñÓ 	áÓ �Ê

	
m�

�
' è 	PðA« AK. ðPð

@ YK
Y

�
� PA�

�
J

	
kA

K."

é
�
®J

�
®

�
�Ë@

	
à@Xñ�Ë@ ©Ó

�
H@Q

�
Kñ

�
K

�
�Ê

	
gð Aî

	
DÓ

@ YK
Yî

�
DË Qå�Ó úÎ« Ñê

�
®Ê¢

�
�ð H. AëPC

Ë

�
è @ñ

	
K @ñ

	
KñºK
ð Qå�Ó

" AëQ�

	
« @ñJ.ªË @

. éK
Qå�Ó

�
éK
A«QK. Q

�
®
�
J�

�
�

�
H

@YK. Aê«A

	
�ð

@ AÓ YªK.

15

=> "In a nutshell, Europe wants to end its migration crisis by creating a state for
migrants on the borders of Egypt. Thus these refugees will become nuclei of terrorism
and Europe will release them into Egypt to threaten its security and to create tensions
with its neighbouring brotherly country Sudan, especially after the latter’s situation
started to become stable because of Egypt. Go play another game!".

2. The subject of the tweet either implicitly or explicitly expresses an aversion to migra-
tion to Europe, or portrays Europe as a non favorable destination because of factors
such as safety and income or because the subject mentions that Europe doesn’t want
any more migrants.
Example:

	
¬ñ� B@ð

�
éÒª

	
K Q�.» @ ù

ëð 	áÓ

B@ úÎ« @ñ

	
¢

	
¯Ag Qå�Ó I. ª

�
�AK
 . . 	áÒJ
Ë @ð

�
�@QªË@ð AK
Pñ�» Aî

	
EðYK
QK
"

ÕºË Q�

	

g Q
�
®

	
®Ë @ð ¨ñm.

Ì'@ð . . Õº
	
JÓ

@ úÎ« @ñ

	
¢

	
¯Ag . . . AK. ðPð@

	
à@YÊK. ú

	
¯

�
éK. Q

	
ªË @ð

�
èQj. êË @ PA

	
JK.

	
àðñ

�
Jº

�
K

"H. @Q
	
mÌ'@ð PAÓYË@ð É

�
J
�
®Ë @ð 	áj. �Ë@ð H. Qå

	
�Ë@ð Q�
j. î

�
DË @ 	áÓ

=> "They want it like Syria, Iraq and Yemen... Oh people of Egypt, preserve security
which is the biggest blessing or else you will burn in the fire of migration to European
countries... Preserve your security... Hunger and poverty are much better for you
than displacement, brutality, imprisonment, murder, destruction and desolation".

3. The subject of the tweet holds a grudge against Europe or expresses hate or disgust
towards it or portrays migrants to Europe as lowly.
Example:

	
J
� É¿ A

	
K

@ @

	
Yë

�
�ñ

	
¯ð AK. ðPð

@ ú

	
¯ úk

.
B ú

	
GXQå

�
�ð ú

æ

	
�Q« ½

�
Jëð ú

æ

	
�P@ É

�
Jk@ Ym× É

�
¯

B@ úÎ«"

tip ��Ë @ Q
	

¢
�
J
	
�K
ð ÐXA

	
mÌ'@ É

�
JÓ ú

	
æÓ QÓ@ð

B@ ù

�
®Ê

�
JK
ð ú

Î« ÐY

	
m�'

 ZA
	
JK. @ ÈA

�
JÓ

@ð ½ËA

�
JÓ@ @

	
Yë

�
�ñ

	
¯ð ø

	P

" �
� 	Q

�
KQÓ AK

�
�Q

	
®Ë @

�
I

	
Q̄« ÐAÒmÌ'@ ð@ ø

YªK.

	áÓ
�
éËðA¢Ë@

	

	
¢

	
JK

=> "At least no one occupied my land and stomped on my dignity and turned me
into a homeless refugee in Europe. In addition to that, every summer people like you
serve me and take orders from me like butlers and they wait for me to give them a tip.
Then they clean the table and the bathroom once I leave. Now do you understand
the difference you mercenary?".

• Annotate with -1 if the tweet isUNRELATED. Unrelated tweets can be interpreted
as the following:

1. The subject of the corresponding tweet is a news agency or someone reporting news,
thus the tweet contains objective events.
Example:

úÍ@

Zñj. ÊË @
�

�k I. Ê¢Ë
�

HCgP ZA
	
J
�
K

@ A

�
Q̄

	
« @ñ

	
¯ñ

�
K 	áK

	
YË @ úÎ

�
J
�
®Ë @

�
éÊJ
�k ¨A

	
®
�
KP@ :

�
èQj. êÊË

�
éJ
ËðYË@

�
éÒ

	
¢

	
JÖÏ @"

" A�
	
m�

�
� 1071 úÍ@

ø

PAm.
Ì'@ QK. ñ

�
J»

@ 	áÓ �XA�Ë@ ú

�
ækð ÐAªË@ ©Ê¢Ó

	
Y

	
JÓ ¡�ñ

�
JÖÏ @ QjJ. Ë @

Q�.« AK. ðPð

@

=> "International Organization for Migration (IMO): Death toll of drowning asylum
seekers to Europe across the Mediterranean rises to 1071".

16

2. The subject either implicitly or explicitly talks about someone else’s opinion or reports
an incident with objectivity.
Example:

" AK
Pñ�#
�

�Qå
�
� ÈAÒ

�
�Ë AJ
»Q

�
K# YK
Yî

�
E I. �. ��.

�
èYK
Yg.

	á�

Jk. B

�
ék. ñÓ 	áÓ

�
é

	
®

KA

	
g AK. ðPð

@#"

=> "#Europe is scared of a new refugee wave because of #Turkey’s threats to
northeast #Syria".

3. The subject is talking about an unrelated topic.
Example:

Q�
J.ºË@ ø

XAÓQË@ XQå�Ë@ ñë
�

IK
ñºË@ ú

	
¯ ùÒ��
 @

	
Yºë ú

G
.
Q«

@ ú

×AÔg : Õæ

	
¢ªË@ é<Ë @

�
�Ê

	
g ú

	
¯ Qº

	
®
�
J
	
JË"

.Great grey shrike
QjJ. Ë @

�
�Qå

�
�

�
�£A

	
JÓð AK. ðPð@

�
èPA

�
¯ Aî

�
EQj. ë ñ¢

	
k ù

¢

	
ª

�
K

�
IJ
k

�
IK
ñºËAK. QÖß

�
èQj. ë ¡

	
k éË

"ú

G
.
QªË@ i. J
Ê

	
mÌ'@ ÈAÖÞ

�
�ð ¡�ñ

�
JÖÏ @

=> "May we contemplate the creation of Almighty God: Arab Pigeon is its name
in Kuwait, which is the Great Grey Shrike in English. Its migration line passes
through Kuwait where it spans the continent of Europe and other regions East of the
Mediterranean sea and North of the Arab Gulf".

4. The tweet is neutral and doesn’t convey any positive or negative perception on migra-
tion to Europe, or it is a joke that doesn’t convey a specific stance.
Example:

" AK. ðPð

@ úÍ@

�
èQj. êË @ 	á« XYm× ø

@P ø

Y

	
J« AÓ"

=> "I don’t have a specific opinion on migration to Europe".

Side Notes for Annotation:

• There is a huge number of tweets related to Turkey and the Turkish president, but
since it is not part of the European Union, it is not to be considered in Europe in
our study.

• If you have any doubt about the context of a tweet copy and paste it in Twitter to
search for it and read the thread. Tweets with emoticons are often encoded with
multiple “?” in spreadsheets, so remove the question marks before pasting the tweet
to search for it on Twitter.

3.5.2 Cohen’s Kappa Coefficient Calculation

Before Adjudication

The reliability and quality of annotations are very important factors when it comes to train-
ing a Machine Learning model to make accurate predictions. Knowing this, we followed
the footsteps of [Refaee and Rieser, 2014] where we recruited two Arabic native speakers
to annotate 300 identical tweets from our dataset.
Table 3.4 shows the annotations’ matches (in white) and disagreements (in grey) between
both annotators for all possible combinations of classes:

17

First Annotator Second Annotator Total
1 1 30
1 0 1
1 -1 4
0 1 3
0 0 41
0 -1 21
-1 1 11
-1 0 14
-1 -1 175
Total Disagreements 54

Table 3.4: Annotations with the Total Matches and Disagreements before Adjudication

After annotation, there were 54 total disagreements out of a total of 300 tweets, amount-
ing to a fraction of 18%. The calculation of the inter-annotator agreement using Cohen’s
Kappa Coefficient [Cohen, 1960] to assess the quality of the annotations immediately fol-
lowed.
Our results yielded a Cohen’s Kappa Coefficient κ = 0.639. According to
[Landis and Koch, 1977], it is possible to assess κ according to the following rules:

• κ < 0.00: Poor agreement

• κ between 0.00 and 0.20: Slight agreement

• κ between 0.21 and 0.40: Fair agreement

• κ between 0.41 and 0.60: Moderate agreement

• κ between 0.61 and 0.80: Substantial agreement

• κ between 0.81 and 1.00: Almost perfect agreement

Therefore, since our κ = 0.639 was between 0.61 and 0.80, we had a substantial agreement.
This was a good start but our results were subject to improvement using adjudication.

After Adjudication

Adjudication, as [Bamman, 2017] defined it: "is the process of deciding on a single annota-
tion for a piece of text using information about the independent annotations". Therefore,
we proceeded by re-reading the tweets with different annotations in order to decide which
annotator’s annotation was more accurate to choose. After we accomplished the re-reading
process, we discovered some reasons behind the discrepancies such as:

• Different perceptions of the content of a tweet due to the complexity of the Arabic
language that was used or due to the use of unfamiliar dialectal Arabic slang.

• Different perceptions of the content of a tweet due to a lack of knowledge of the
context the tweet fell under.

• Different perceptions of the content of a tweet due to some ambiguity in the user’s
stance that didn’t render the tweet fully comprehensible.

Table 3.5 shows some examples of tweets with both annotators’ differing annotations, in
addition to some viable reasons behind the differences:

18

Tweet Translation First
Annotator

Second
Annotator

Adjudication
Decision

	á�
K
Qå�Ë @ 	áK
Qk. AêÖÏ @ ÈAª
	
K

ú

	
¯ ÑëPAÔ«

@

�
IK. @

	
X 	áK

	
YË @

	áK

	
YË @ð ,

	
�J
K.

B@ QjJ. Ë @

AK. ðPð

@

�
é
	
Jk. Èñ

	
kX 	áÓ @ñª

	
JÓ

Ñî
�
EPA

�
¯ 	Pñ

	
J» 	áÓ

�
èYJ

�
�ÖÏ @

	
àñJ
K. Pð

B@ 	áî

�
DÓ@ 	áK

	
YË @ð

.
	
àðQ

�
¯

�
H@

	
X @Qå�

�
¯ Ñê

	
¯C�

@ ©J
K.

The soles of the
unidentified immigrants
whose ages melted in the
White Sea, and who
were not allowed
to enter the heaven of
"Europe" that was built
from the jewels
of their continent
and that Europeans
forcibly sold their
ancestors centuries ago

0 1 1

Reason
The second annotator’s annotation prevailed because the word "heaven"
was used to describe Europe, which means they are presenting it with a
positive image

Ñ
	

¢ªÓð
�

I
	
¯ 	P AJ

�
®K
Q

	
¯AK. ©

	
�ñË@

�
HA

�
�AªÓ @ñ

	
�J.

�
®K
 Ñ« H. AJ.

�
�Ë@

ð@
	
àA

	
JJ. Ë

�
�AªÓ ©Ó

�
éK
ðA�

�
�Ó

�
�J.¢

	
J�
K. QÓB@ , ø

ñ

�
� Q�

�» @

Qk. AêÖÏ @ YJ
» @ð i. J
Ê
	
mÌ'@ ÈðX úÎ«

I. ºK
 Ñ«
�

�Ó AK. ðPð@ úÎ«

	
àA

	
JJ. ÊK.

	á�
K
CÓ

The situation in Africa
sucks and most of the
youth are getting identical
salaries to Lebanon or
a bit more. The
same thing applies for
Gulf countries,
and of course immigrants
in Europe and not pumping
millions into Lebanon

0 -1 0

Reason
The first annotator’s annotation prevailed because the user stated that the
financial situation in Europe is horrible like it is in Africa, which yielded
a negative image of Europe

Table 3.5: Examples of Differing Annotations with the Reasons Behind the Adjudications

After adjudication, there were 27 total disagreements, thus half the amount that existed
before this phase. At that stage, we re-calculated Cohen’s Kappa Coefficient to evaluate
the robustness of our annotations and we achieved a new κ = 0.825. The value that we
obtained signifies that we achieved an almost perfect agreement on these 300 tweets, which
was a drastic improvement compared to the results we previously had. Table 3.6 shows
the annotations’ matches (in white) and disagreements (in grey) between both annotators
for all possible combinations of classes after adjudication:

19

First Annotator Second Annotator Total
1 1 40
1 0 1
1 -1 1
0 1 1
0 0 50
0 -1 16
-1 1 3
-1 0 5
-1 -1 183
Total Disagreements 27

Table 3.6: Annotations with the Total Matches and Disagreements after Adjudication

Our results confirmed that the guidelines were clear and that annotators were consis-
tently following them. The remainder of the dataset was annotated by the First Annotator
and it consisted of 2715 tweets by the 9th crawl with the following distribution:

• 1582 tweets were annotated with -1 which consisted of 58.27% of the entire dataset.

• 730 tweets were annotated with 0 which consisted of 26.89% of the entire dataset.

• 403 tweets were annotated with 1 which consisted of 14.84% of the entire dataset.

At that time, we were ready to start experimenting with different machine learning ap-
proaches.

20

Chapter 4

Machine Learning Approaches for
Tweet Classification

4.1 Support-Vector Machines

Support-Vector Machines (SVM) [Cortes and Vapnik, 1995] are supervised linear classi-
fiers that select the hyperplane that maximizes the separation margin between classes.
They are referred to as large margin classifiers and their solution only depends on a small
subset of training examples called support vectors. SVM are robust because they can
easily be extended to non-linear separation using kernel machines [Passerini, 2019]. For
running this Machine Learning algorithm as well as for the succeeding ones, we used the
Scikit Learn Machine Learning library for Python [Pedregosa et al., 2011]. For word em-
beddings, we used Facebook’s fastText library [Joulin et al., 2016a, Joulin et al., 2016b,
Bojanowski et al., 2017] for its efficiency and its support of Arabic.

4.1.1 Preliminary Phase with Tweet Pre-processing

Shortly after our 9th crawl, we had 2715 annotated tweets which was a sufficient amount
to start experimenting with Machine Learning algorithms. In this approach as well as in
the others to follow, we loaded the Arabic fastText embeddings model, then we split our
dataset into: 80% for training (2172 tweets) and 20% for testing (543 tweets) as the code
below shows:

print("Loading FT model")
model_ft = fasttext.load_model(’/home/baalbaki/Desktop/FastText/cc.ar.300.bin’)

try:
from sklearn.model_selection import train_test_split

except ImportError:
from sklearn.cross_validation import train_test_split

dataset = pd.read_csv(r’dataset.csv’)
X, y = dataset.tweet, dataset.perception #X now holds the tweets and y holds the

labels
training_tweets, testing_tweets, training_labels, testing_labels =

train_test_split(X, y, test_size=0.2, random_state=42)

After splitting our dataset, we cleaned our tweets from the following 248 stop words which
are not very useful for the learning process like "if", "so", "what" and others:

21

, ú

�
GCË@ , 	áK

	
YË @ ,

	
àA

�
JÊË @ , ù

KCË@ , ú

�
GCË@ , 	áK

	
YË @ , ø

	
YË@ , ú

�
æË @ , B@

, B

@ ,Q

�
�»

@ , É

�
¯

@ ,

	
¬

@ ,

	
à

	
X@

, AÓ
	
X @

, @
	
X @

,
	
X @

"

, AÓ@

, AÓ

@ , AÓ

@ , Ð

@ , 	áºJ
Ë @

, AÒºJ
Ë @
, ÕºJ
Ë @

, ½J
Ë @
, úÍ@

, ú

�
G @ñÊË @ , 	áK

	
YÊË @ ,

	
à@

	
YÊË @ ,

	á�

�
JÊË @ , AJ

�
JÊË @ ,

	
àA

�
JÊË @ , ù

KCË@

, @
	
XAÖß. , ø

@ , ø

�
@ , èð

@ , ½

JËð

@ , ZBð

@ ,ð

@ , Aë

�
@ , è

�
@ , ú

	
G

@ , ú

	
G

@ , é

	
K @

, AÖ
	

ß @

,
	á�
�
	
K

@ , AÒ

�
J
	
K

@ , Õ

�
æ

	
K

@ ,

�
I

	
K

@ , A

	
K

@ , A

	
K @

,
	
à@

,

	
à

@

, 	áÖß. , AÖß. , úÎK. , ÉK. , 	áºK. , AÒºK. , ÕºK. , ÕºK. , ½K. ,
	

�ªK. , YªK. , ��. , t�'
. , éK
 @

, AÒ

	
JK

@ , 	áK

@ , 	áK

@ , ø

@

, AîE

@

, A
�

�Ag ,
�
éÖ

�
ß , Õç

�
' , ½

	
J�

�
K ,

	á�

�
K , ú

�
G , é

�
K , AÒºÊ

�
K , ÕºÊ

�
K , ½Ê

�
K , YJ
K. ,

	á�
K. , ú

G
.

, 	áîE. , AÒîE. , ÑîE. , AîE. , éK. , A
	
JK.

, è
	
X , 	áºË

	
X , AÒºË

	
X , ÕºË

	
X , ½Ë

	
X , ½

	
K @

	
X ,

	
à@

	
X , ¼@

	
X ,

�
H@

	
X , @

	
X ,

	
àðX , C

	
g ,

	á�
g , AÒ
�
JJ
k ,

�
IJ
k , ú

�
æk , @

	
YJ.k

, éJ
Ê« , ½J
Ê« , úÎ« , É« , úæ�« , @Y« ,
	
àA

�
J

�
� , øñ� ,

	
¬ñ� ,

�
IK
P , ½

	
JK

	
X , 	áK

	
X , ø

	
X , ú

�
G @ð

	
X , A

�
K @ð

	
X , @ð

	
X ,ð

	
X

, @
	
Y» , 	áK

A¿ , ø

A¿ , AÖ

	
ß

A¿ ,

	
à

A¿ , Y

�
¯ , AîD

	
¯ , éJ

	
¯ , AÒJ

	
¯ , Õæ

	
¯ , ú

	
¯ , 	áÔ

	
¯ , C

	
¯ ,

	
àA

	
¯ , @

	
XA

	
¯ ,Q�

	
« , Y

	
J« , 	á« , AÔ«

, AÒJ
�B , B , AÒ
	
®J
» ,

	
J
» ,

�
IJ
» , ú

» , AÒ» , Õ» , Õ» , AÒîD
Ê¿ , AÒºJ
Ê¿ , AÒÊ¿ , A

�
JÊ¿ , AÒëC¿ , C¿ , É¿ , ½Ë

	
Y»

, 	áË , AÖÏ , ÕË , CJ
ºË , ú

¾Ë , AÒ

	
JºË , 	áºË , AÒºË , ÕºË , ½Ë , ÉªË , A

	
J�Ë , 	á�Ë ,

	á�
��Ë , AÒ

�
J�Ë , Õ

�
æ�Ë ,

�
I�Ë , øYË

, @
	
XAÓ , AÓ , @ñ��
Ë , A

�
J��
Ë ,

�
I��
Ë , A��
Ë , ��
Ë ,

�
IJ
Ë ,

	á

�Ë , ú

Í , AÓñË , BñË ,ñË , 	áêË , AÒêË , ÑêË , AêË , éË , A

	
JË

,
	á�

�
KAë , ú

�
GAë , é

�
KAë ,

	
àA

�
KAë , Aë , Ñª

	
K , ñm�

	
' , 	ám�

	
' , AÒêÓ , éÓ ,

	
Y

	
JÓ , Aî

	
DÓ , é

	
JÓ , 	áÓ , 	áÜØ , AÜØ , ©Ó ,

	
YÓ , ú

�
æÓ

,ñë , ½ËA
	
Jë , ¼A

	
Jë , A

	
Jë , 	áë , AÒë , Ñë , Cë , Éë , @

	
Yºë , 	áK

	
Yë , ø

	
Yë , è

	
Yë ,

	
à@

	
Yë , @

	
Yë , A

	
JëAë , ¼Aë

" AK
 , ñëð , 	áÓð , AÓð , ñËð , 	áºËð , Bð ,
	
à@

ð , @

	
X @

ð ,

	
X @

ð , 	áK

	
YË @ð , ø

	
YË@ð ,

�
HAîD
ë ,

�
IJ
ë , AJ
ë , ù

ë , ZB

ñë

Once the tweets were cleaned from stop words, we used a fastText in-built function in
order to extract the 300 dimensional vectors from the tweets. The following shows a tweet
before and after being cleaned from stop words, along with its corresponding vector:

• Tweet before being cleaned from stop words:

�
H@Y«A�ÖÏ @ 	áÓ YK

	QÖÏ @ q
	

�
�
� ú

» AK. ðPð

@ 	P@

	Q�
�K. B

	
àA

	
«ðXP

@_ I. J
£_ I. k. P#

�
é
�
P̄ð 	áK
Qk. AêÖÏ @

	
ÊÓ"

"@DUMMYUSER !!! https://t.co/a5c4tlPmRXSt

=> "The case of migrants is #Recep_Tayyip_Erdogan’s card to blackmail Europe

so that it provides more help https://t.co/a5c4tlPmRXSt !!! @DUM-
MYUSER".

• Cleaned stop words:
" 	áÓ , ú

»"

• Tweet after being cleaned from the aforementioned stop words:

�
H@Y«A�ÖÏ @ YK

	QÖÏ @ q
	

�
�
� AK. ðPð

@ 	P@

	Q�
�K. B

	
àA

	
«ðXP

@_ I. J
£_ I. k. P#

�
é
�
P̄ð 	áK
Qk. AêÖÏ @

	
ÊÓ"

"@DUMMYUSER !!! https://t.co/a5c4tlPmRXSt

=> "The case of migrants is #Recep_Tayyip_Erdogan’s card to blackmail Europe

provides more help https://t.co/a5c4tlPmRXSt !!! @DUMMYUSER".

• Corresponding 300 dimensional vector after cleaning:
[0.0072241658344864845, ..., 0.0166148841381073]

The following code was responsible of cleaning the stop words and extracting the vectors
from tweets:

22

def CleanStopWords(tweet):
stop_words = stopwords.words(’arabic’)
tweetSplitted = tweet.split(" ")
tweet = [w for w in tweetSplitted if w not in stop_words]
return(tweet)

def ExtractVectors(tweet, removeStopwords): #removeStopwords is a boolean
variable
tweet = tweet.rstrip()
if (removeStopwords):

tweet = CleanStopWords(tweet)
tweet = ’ ’.join(tweet)

vector = model_ft.get_sentence_vector(tweet)
return(vector)

Once we were done with the aforementioned task, we used Scikit Learn’s SVC to train our
Machine Learning model using our training tweets and training labels. Our classifier "clf"
took 3 parameters:

• C: which is the regularization parameter. It controls the trade-off between a smooth
decision boundary and classifying training points correctly. It is always a good prac-
tice to have a lower value for C in order to avoid overfitting [Hawkins, 2004].

• Kernel: which is a function that computes inner products in feature space. It is
usual for feature spaces to be too simple and consequently, linear division of data
is not possible. Thus, kernels solve this problem by mapping features to a higher-
dimensional feature space where linear data separation becomes possible.

• Gamma: which is the kernel coefficient that defines how far the influence of a single
training example reaches. If gamma has a high value this means that each training
example has a close reach. This way, our model would fail to generalize since it would
be prone to excessively adjust to training examples. This is a behavior one would
like to avoid and thus the lower the gamma, the better.

The snippet of code below denotes our choices for all of these 3 parameters:

clf = SVC(C=10, kernel=’rbf’, gamma=0.02)
clf.fit(training_tweets_vectors, training_labels_array)
predicted_labels = clf.predict(testing_tweets_vectors)

After the training process was done, we ran our classifier and got the results shown in table
4.1:

Class Precision Recall F1-score Support
-1 0.58 1.00 0.74 316
0 0.00 0.00 0.00 146
1 0.00 0.00 0.00 81

Accuracy 0.58 543
Macro Average 0.19 0.33 0.25 543

Weighted Average 0.34 0.58 0.43 543
Model Accuracy 0.58195211786372

Table 4.1: Report of the Results of the Preliminary SVM Approach

23

In order to assess the quality of our results, it is imperative to understand the meaning
of: precision, recall, f1-score and support. We explained them by referring to Scikit Learn’s
documentation [Pedregosa et al., 2011]:

• Precision: the ratio tp / (tp + fp) where tp is the number of true positives and fp
the number of false positives. The precision is the ability of a classifier not to falsely
label a sample.

• Recall: the ratio tp / (tp + fn) where tp is the number of true positives and fn the
number of false negatives. The recall is the ability of the classifier to find all positive
samples.

• F1-score: the weighted harmonic mean of precision and recall, where an F-beta
score reaches its best value at 1 and worst score at 0.

• Support: the number of occurrences of each class in the correct labels.

As shown in table 4.1, classification for class -1 achieved a fair precision of 0.58 and a
perfect recall of 1.00. But it did not recognize both classes 0 and 1 since the values of
precision and recall were both 0.00. The final model accuracy of 0.58195211786372 was
actually the majority baseline, meaning that our model only classified the majority class
-1 which consisted of around 58% of our entire dataset. This meant that our model did
not learn anything for classes 0 and 1. This was probably due to the random choice of
splits for our training and test sets as well as the random choice for the parameters of
our classifier. Our results could have been much better had we performed model selection.
Therefore, we opted to search for the best hyperparameters (which are parameters with set
values before the learning process) and the best combination of training and test sets us-
ing K-Fold Cross-Validation [Mosteller and Tukey, 1968] and Grid Search Cross-Validation
[Pedregosa et al., 2011].

4.1.2 K-Fold Cross-Validation

As mentioned above, a viable explanation for achieving such a low accuracy could be that
the splitting choice for our training and test sets was not optimal. Our selection was not
very reliable as there might have been other splits that would have given more reliable
results. As the accuracy that can be obtained with one combination of training and test
sets can be better than another combination, we tested our model on one random split
and we got better results than our baseline. Therefore, we opted to use K-Fold Cross
Validation [Mosteller and Tukey, 1968] to automatically find out the best split possible
and use it. K-Fold Cross Validation divides the data into folds and evaluates all the
possible combinations of training and test sets. This ensures that each fold is used as a
testing set at some point. Figure 4.1 below provides a visual representation of the K-Fold
Cross-Validation approach.

24

Figure 4.1: Visual Representation of the K-Fold Cross-Validation Approach
[Wikipedia, 2019]

In order to perform K-Fold Cross-Validation, we used Scikit Learn’s built-in KFold
module as shown in the snippet of code below:

try:
from sklearn.model_selection import KFold, cross_val_score
legacy = False

except ImportError:
from sklearn.cross_validation import KFold, cross_val_score
legacy = True

if legacy:
kf = KFold(len(training_labels),n_folds=10, shuffle=True, random_state=42)

else:
kf = KFold(n_splits=10, shuffle=True, random_state=42)

Since we wanted to perform 10 splits, we set the number of splits to 10 in order to perform
what is called: 10-Fold Cross-Validation. We iterated on each gamma, trained our classifier
with it, computed cross-validated accuracy scores and stored them for each fold. At the
end of our iterations, we performed hyperparameter optimization by getting the gamma
with the highest mean accuracy and we trained over the full training set with the best
gamma. Last but not least, we predicted on the test set in order to compute the accuracy
of our model after Cross-Validation. The code below was responsible for this entire process:

gamma_values = [0.1, 0.05, 0.02, 0.01]
accuracy_scores = []

for gamma in gamma_values:

clf = SVC(C=10, kernel=’rbf’, gamma=gamma)

if legacy:
scores = cross_val_score(clf, training_tweets_vectors,

training_labels_array, cv=kf, scoring=’accuracy’)

25

else:
scores = cross_val_score(clf, training_tweets_vectors,

training_labels_array, cv=kf.split(training_tweets_vectors),
scoring=’accuracy’)

accuracy_score = scores.mean()
accuracy_scores.append(accuracy_score)

best_index = np.array(accuracy_scores).argmax()
best_gamma = gamma_values[best_index]

clf = SVC(C=10, kernel=’rbf’, gamma=best_gamma)
clf.fit(training_tweets_vectors, training_labels_array)

predicted_labels = clf.predict(testing_tweets_vectors)

After getting that the best gamma was equal to 0.1, we ran our classifier to predict on the
test set with it. The results of our classifier are shown in table 4.2:

Class Precision Recall F1-score Support
-1 0.58 1.00 0.74 316
0 0.67 0.01 0.03 146
1 0.00 0.00 0.00 81

Accuracy 0.58 543
Macro Average 0.42 0.34 0.25 543

Weighted Average 0.52 0.58 0.44 543
Model Accuracy 0.583793738489871

Table 4.2: Report of the Results of the K-Fold Cross-Validation Approach

Although the model’s overall accuracy remained quite the same and did not really
improve after Cross-Validation, the precision for class 0 significantly improved from 0.00
to 0.67. On the other hand recall scored 0.01 which means that it required much more
improvement. Nevertheless, these results meant that the model started to slowly learn for
the aforementioned class, which was an important accomplishment but still not enough.
Our poor results might have been due to our random choice of hyperparameters which
is not a favorable practice. Therefore, we chose to apply Hyperparameter Tuning using
Grid Search Cross-Validation [Pedregosa et al., 2011] in order to find the best parameters
to train our model with.

4.1.3 Hyperparameter Tuning using Grid Search Cross-Validation

Grid Search Cross-Validation is a method to perform hyperparameter tuning, as in to find
the best combination of hyperparameters. These are parameters that are passed to the
Machine Learning model and that it doesn’t learn by itself, such as: C, Gamma, Kernel.
Each combination of hyperparameters represents a Machine Learning model, thus different
combinations yield different models. The goal of Grid Search Cross-Validation is to train
each of these models on the full training set, find the best hyperparameters and evaluate
them using Cross-Validation on the full testing set that was not used during model
selection. At the end, the best-performing model gets selected. In our case, we decided to
choose 4 different values of C, 6 different values of Gamma and 3 different values for the
Kernel as possible hyperparameters. The following code includes our use of Scikit Learn’s
default GridSearchCV library with the aforementioned possible hyperparameters:

26

try:
from sklearn.model_selection import GridSearchCV

except ImportError:
from sklearn.grid_search import GridSearchCV

possible_parameters = {
’C’: [1e0, 1e1, 1e2, 1e3],
’gamma’: [0.0001,0.001,0.05,0.02,0.01,0.1],
’kernel’: [’linear’, ’rbf’,’poly’]

}

clf = GridSearchCV(SVC(), possible_parameters, n_jobs=4, cv=3)
clf.fit(training_tweets_vectors, training_labels_array)
print("Best parameters: ",clf.best_params_)
predicted_labels = clf.predict(testing_tweets_vectors)

The best hyperparameters that we got were:
Gamma = 0.01, C = 1000.0, Kernel = rbf
Since GridSearchCV automatically sets the best hyperparameters to the classifier, we sim-
ply ran it to predict on the test set. The results we got are denoted in table 4.3:

Class Precision Recall F1-score Support
-1 0.71 0.82 0.76 316
0 0.48 0.39 0.43 146
1 0.50 0.37 0.43 81

Accuracy 0.64 543
Macro Average 0.56 0.53 0.54 543

Weighted Average 0.62 0.64 0.62 543
Model Accuracy 0.6372007366482505

Table 4.3: Report of the Results of the Grid Search Cross-Validation Approach

Our overall accuracy improved by an impressive factor of 0.05 compared to the previous
sole approach of Cross-Validation. Diving more into specifics, despite the fact that for class
0 precision dropped from 0.67 to 0.48, recall improved from 0.01 to 0.39. Last but not
least, there was a drastic improvement for both precision and recall for class 1, as they
rose from 0.00 each to 0.50 for precision and 0.37 for recall respectively. Even though
our results carried substantial improvements, we wanted to see if cleaning our tweets more
would render higher quality results.

4.1.4 Further Tweet Pre-processing

After thorough reflection, the components that we decided to remove were: URLs, user
mentions, punctuations, English numbers, Arabic numbers and emojis. As they are not
very useful for our learning process, having vectors for them would have evoked noise in
our data which is something that should be avoided. The only component that could have
been useful for learning was emojis, but since most of the times they were encoded as "?"
in spreadsheets, we decided to completely remove them for consistency. The following list
contains all of the regular expressions or code that we used in order to clean the tweets
from the aforementioned components:

• URLs:
http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+

27

• User Mentions:
(?<=^|(?<=[^a-zA-Z0-9-\.]))@([A-Za-z0-9_]+)

• Punctuations:

punctuations = [’!’,’$’,’%’,’^’,’&’,’*’] #there are much more but we
only showed these for brevity

for i in punctuations:
tweet = tweet.replace(i, ’’)

• English Numbers:
[0-9]+

• Arabic Numbers:

arabic_numbers=[9,8,7,6,5,4,3,2,1,0]

for i in arabic_numbers:
tweet = tweet.replace(i, ’’)

• Emojis:

from emoji import UNICODE_EMOJI #default emoji library that contains a
dictionary of a wide range of emojis

def CleanEmojis(sentence):
emojiList=list(UNICODE_EMOJI.keys())
for emojiIndex in range(len(emojiList)):

for sentenceIndex in range(len(sentence)):
if emojiList[emojiIndex] in sentence[sentenceIndex]:

sentence[sentenceIndex] =
sentence[sentenceIndex].replace(emojiList[emojiIndex],’’)

The example below clearly shows the tweet that we mentioned earlier in the study before
and after being cleaned from the new components, along with its corresponding vector:

• Tweet before being cleaned from the new components:

�
H@Y«A�ÖÏ @ YK

	QÖÏ @ q
	

�
�
� AK. ðPð

@ 	P@

	Q�
�K. B

	
àA

	
«ðXP

@_ I. J
£_ I. k. P#

�
é
�
P̄ð 	áK
Qk. AêÖÏ @

	
ÊÓ"

"@DUMMYUSER !!! https://t.co/a5c4tlPmRXSt

=> "The case of migrants is #Recep_Tayyip_Erdogan’s card to blackmail Europe

provides more help https://t.co/a5c4tlPmRXSt !!! @DUMMYUSER".

• Cleaned components:

"https://t.co/a5c4tlPmRXSt, @DUMMYUSER, !!!, "

• Tweet after being cleaned from the new components:

" �
H@Y«A�ÖÏ @ YK

	QÖÏ @ q
	

�
�
� AK. ðPð

@ 	P@

	Q�
�K. B

	
àA

	
«ðXP

@_ I. J
£_ I. k. P#

�
é
�
P̄ð 	áK
Qk. AêÖÏ @

	
ÊÓ"

28

=> "The case of migrants is #Recep_Tayyip_Erdogan’s card to blackmail Europe
provides more help"

• Corresponding 300 dimensional vector after cleaning:
[0.0063792357907902112, ..., 0.0233562108974325]

The significance of the cleaning procedure is visually represented in figure 4.2, where
the vectors of the 2715 tweets are shown before and after cleaning them from the new
components:

[Before] [After]

Figure 4.2: Vectorial Representations of the Tweets Before and After Cleaning: Red is -1,
Blue is 0 and Green is 1

It is evident that before cleaning, the different classes were more mixed and there
was higher dispersion among classes themselves. On the other hand after cleaning, each
class was more compact and the overall vectors were less dispersed. This is visual proof
that cleaning the data was very useful to reduce noise. At that stage we were ready to
retry K-Fold Cross-Validation all while finding the best hyperparameters, in addition to
Hyperparameter Tuning using Grid Search Cross-Validation.

4.1.5 K-Fold Cross-Validation

In our previous K-Fold Cross-Validation tentative, we had been only changing the gamma
hyperparameter. In order to find a more optimal solution, we decided to try 72 different
combinations of hyperparameters, thus we also chose values for both C and the Kernel.
The following code explains this process:

try:
from sklearn.model_selection import KFold, cross_val_score
legacy = False

except ImportError:
from sklearn.cross_validation import KFold, cross_val_score
legacy = True

if legacy:
kf = KFold(len(training_labels),n_folds=10, shuffle=True, random_state=42)

else:
kf = KFold(n_splits=10, shuffle=True, random_state=42)

gamma_values = [0.0001,0.001,0.05,0.02,0.01,0.1]
C_values = [1e0, 1e1, 1e2, 1e3]

29

kernel_values = [’linear’, ’rbf’,’poly’]
accuracy_scores = []
the_gammas=[]
the_kernels=[]
the_Cs=[]

for gamma in gamma_values:
for C in C_values:

for kernel in kernel_values:
clf = SVC(C=C, kernel=kernel, gamma=gamma)
if legacy:

scores = cross_val_score(clf, training_tweets_vectors,
training_labels_array, cv=kf, scoring=’accuracy’)

else:
scores = cross_val_score(clf, training_tweets_vectors,

training_labels_array, cv=kf.split(training_tweets_vectors),
scoring=’accuracy’)

the_gammas.append(gamma)
the_kernels.append(kernel)
the_Cs.append(C)
accuracy_score = scores.mean()
accuracy_scores.append(accuracy_score)

best_index = np.array(accuracy_scores).argmax()
best_gamma = the_gammas[best_index]
best_C = the_Cs[best_index]
best_kernel = the_kernels[best_index]
print("The best combination of hyperparameters is:

Gamma=",str(best_gamma),"\t","C=",str(best_C),"\t","Kernel=",str(best_kernel))

After looping on all of the possible combinations, we got that the best hyperparameters
were:
Gamma = 0.05, C = 100.0, Kernel = rbf
Thus we set our classifier with these hyperparameters and ran it on the test set as shown
below:

clf = SVC(C=best_C, kernel=best_kernel, gamma=best_gamma)
clf.fit(training_tweets_vectors, training_labels_array)

predicted_labels = clf.predict(testing_tweets_vectors)

The results we got are denoted in the following table 4.4:

Class Precision Recall F1-score Support
-1 0.68 0.84 0.75 316
0 0.50 0.35 0.41 146
1 0.51 0.32 0.39 81

Accuracy 0.63 543
Macro Average 0.56 0.50 0.52 543

Weighted Average 0.61 0.63 0.61 543
Model Accuracy 0.6298342541436464

Table 4.4: Report of the Results of the Secondary K-Fold Cross-Validation Approach with
the Best Hyperparameters

30

This model performed better than our preliminary Cross-Validation approach. The F1-
score of class 0 rose from 0.03 to 0.41 and in class 1 from 0.00 to 0.39. These were great
indicators that our model actually started learning. Nevertheless, we decided to verify how
well would Hyperparameter Tuning using Grid Search Cross-Validation perform this time.

4.1.6 Hyperparameter Tuning using Grid Search Cross-Validation

As there were no major changes in the Grid Search Cross-Validation part except for tweet
cleaning, we directly proceeded by showing our results for this sub-section. The best
hyperparameters we got were:
Gamma = 0.1, C = 100.0, Kernel = rbf
After repeating the routine procedure of running our classifier on the test set, we got the
following results shown in table 4.5

Class Precision Recall F1-score Support
-1 0.70 0.81 0.75 316
0 0.50 0.39 0.44 146
1 0.52 0.40 0.45 81

Accuracy 0.64 543
Macro Average 0.57 0.53 0.55 543

Weighted Average 0.62 0.64 0.62 543
Model Accuracy 0.6372007366482505

Table 4.5: Report of the Results of the Secondary Grid Search Cross-Validation Approach

We got the exact same overall model accuracy score of 0.6372007366482505 like the
first Grid Search Cross-Validation approach. This signified that tweet cleaning did not
come in handy for this method. Therefore, we decided to try to see if splitting hashtags,
in addition to having more annotated tweets would increase this accuracy as well as the
K-Fold Cross-Validation one.

4.1.7 Splitting Hashtags

Shortly after our 10th crawl, we gained 260 tweets that we annotated, thus remaining with
a total of 2975 tweets. 2380 tweets of them were used for training and the rest 595 tweets
were used for testing. In addition to that, we split hashtags by removing the "#" sign
and by replacing "_" with spaces in order to separate each word in the hashtags. This
procedure is shown in the snippet of code below:

tweet = tweet.replace(’#’, ’’)
tweet = tweet.replace(’_’, ’ ’)

The following example clearly shows the tweet we had previously mentioned before and
after having the hashtag split, as well as its corresponding vector:

• Tweet before splitting the hashtag:

" �
H@Y«A�ÖÏ @ YK

	QÖÏ @ q
	

�
�
� AK. ðPð

@ 	P@

	Q�
�K. B

	
àA

	
«ðXP

@_ I. J
£_ I. k. P#

�
é
�
P̄ð 	áK
Qk. AêÖÏ @

	
ÊÓ"

=> "The case of migrants is #Recep_Tayyip_Erdogan’s card to blackmail Europe
provides more help"

31

• Split hashtag:
" 	

àA
	
«ðXP

@_ I. J
£_ I. k. P#"

=> "#Recep_Tayyip_Erdogan"

• Tweet after splitting the hashtag:

" �
H@Y«A�ÖÏ @ YK

	QÖÏ @ q
	

�
�
� AK. ðPð

@ 	P@

	Q�
�K. B

	
àA

	
«ðXP

@ I. J
£ I. k. P

�
é
�
P̄ð 	áK
Qk. AêÖÏ @

	
ÊÓ"

=> "The case of migrants is Recep Tayyip Erdogan’s card to blackmail Europe
provides more help"

• Corresponding 300 dimensional vector after splitting the hashtag:
[0.0087325667831110986, ..., 0.0321165562703568]

4.1.8 K-Fold Cross-Validation

After the cleaning process was done, we ran our classifier in addition to K-Fold Cross-
Validation and we got the following best hyperparameters:
Gamma = 0.05, C = 100.0, Kernel = rbf
The detailed report of our results is shown in table 4.6:

Class Precision Recall F1-score Support
-1 0.66 0.87 0.75 327
0 0.57 0.40 0.47 174
1 0.50 0.24 0.33 94

Accuracy 0.63 595
Macro Average 0.58 0.50 0.52 595

Weighted Average 0.61 0.63 0.60 595
Model Accuracy 0.6302521008403361

Table 4.6: Report of the Results of the Tertiary K-Fold Cross-Validation Approach with
the Best Hyperparameters and with Split Hashtags

There were some negligible fluctuations in precision and recall for all classes in compar-
ison to the secondary K-Fold Cross-Validation approach and the overall model accuracy
remained quite the same, hovering around 0.63. Thus the addition of 260 tweets and
splitting the hashtags did not really improve our model accuracy for the K-Fold Cross-
Validation approach. Therefore, we resorted to see if it was going to be the same issue
with Hyperparameter Tuning using Grid Search Cross-Validation.

4.1.9 Hyperparameter Tuning using Grid Search Cross-Validation

Using the new and more populated dataset with split hashtags, we ran our classifier with
the Grid Search Cross-Validation approach. The best hyperparameters we got were:
Gamma = 0.1, C = 100, Kernel = rbf
Our full results are shown in table 4.7:

32

Class Precision Recall F1-score Support
-1 0.67 0.84 0.75 327
0 0.58 0.44 0.50 174
1 0.49 0.29 0.36 94

Accuracy 0.63 595
Macro Average 0.58 0.52 0.53 595

Weighted Average 0.62 0.63 0.61 595
Model Accuracy 0.6336134453781512

Table 4.7: Report of the Results of the Tertiary Grid Search Cross-Validation Approach
with Split Hashtags

Like its previous counterpart, this approach’s accuracy remained quite the same, also
hovering around 0.63. The impact that splitting hashtags had on our models was minor.
Therefore, we decided to model the classification task in a different way by running our
classifier on the 2 classes: 0 and 1 in order to determine if we will get a higher accuracy
in binary classification.

4.1.10 K-Fold Cross-Validation with 2 Classes: 0 and 1

We removed all tweets annotated with -1 and we were left with a total of 1240 tweets
where 808 tweets were annotated with 0 and 432 tweets were annotated with 1. In order
to get a clearer idea on how classes 0 and 1 were dispersed, we decided to show their visual
representations before and after cleaning in figure 4.3 below:

[Before] [After]

Figure 4.3: Vectorial Representations of the Tweets Before and After Cleaning: Blue is 0
and Red is 1

The figure above shows the positive effect of cleaning as the noise in data was reduced.
After accomplishing this step, we ran the same K-Fold Cross-Validation technique we had
run in the previous subsections. We found that the best hyperparameters were:
Gamma = 0.02, C = 1000.0, Kernel = rbf
The detailed results are reported in table 4.8:

33

Class Precision Recall F1-score Support
0 0.78 0.90 0.84 168
1 0.69 0.47 0.56 80

Accuracy 0.76 248
Macro Average 0.74 0.69 0.70 248

Weighted Average 0.75 0.76 0.75 248
Model Accuracy 0.7620967741935484

Table 4.8: Report of the Results of the Quaternary K-Fold Cross-Validation Approach
with the Best Hyperparameters for Classes: 0 and 1

We achieved satisfactory results with an overall classification accuracy of
0.7620967741935484. This meant that approximately three quarters of the tweets have
been classified correctly. At that point we wanted to see if Grid Search Cross-Validation
would perform better.

4.1.11 Hyperparameter Tuning using Grid Search Cross-Validation with
2 Classes: 0 and 1

We ran the previously explained Grid Search Cross-Validation technique on the dataset
with the 2 classes: 0 and 1, and we were left with the following best hyperparameters:
Gamma = 0.1, C = 100.0, Kernel = rbf
Our detailed results are shown in the following table 4.9:

Class Precision Recall F1-score Support
0 0.78 0.92 0.84 168
1 0.72 0.45 0.55 80

Accuracy 0.77 248
Macro Average 0.75 0.68 0.70 248

Weighted Average 0.76 0.77 0.75 248
Model Accuracy 0.7661290322580645

Table 4.9: Report of the Results of the Quaternary Grid Search Cross-Validation Approach
for Classes: 0 and 1

Hyperparameter Tuning using Grid Search Cross-Validation performed quite well as
its K-Fold Cross-Validation counterpart, with an overall accuracy of 0.7661290322580645.
This approach with 2 classes led us to the idea explained in the following sub-section.

4.1.12 The 2 Classifiers Approach

As proven in the previous section, it is evident that the 2 classes approach yielded a much
higher accuracy for our classification task. Therefore, we thought to extend this idea into
including 2 binary classifiers that operated on two different datasets:

• Classifier 1: Operated on dataset 1 (2975 tweets) that contained 2 classes:
-1: Which was the class that represented the unrelated tweets (1735 tweets).
2 : Which was a merger of class 0 and class 1. It represented related tweets (1240
tweets).

• Classifier 2: Operated on dataset 2 (1240 tweets) that contained 2 classes:
0: Which was the class that represented the tweets with a negative perception on

34

migration to Europe (808 tweets).
1 : Which was the class that represented the tweets with a positive perception on
migration to Europe (432 tweets).

The idea was to run the first classifier on "dataset 1" and then store the tweets whose
predicted class is 2 in order to feed them for training the second classifier. After the latter
has been trained with the majority of them, a small proportion was to be used as testing
with the correct labels being the ones present in "dataset 2". This way, we would have
benefited from binary classification, all while classifying the 3 classes. This approach is
explained with more clarity in figure 4.4:

Figure 4.4: Visual Representation of the 2 Classifiers Approach

In order to understand the distribution of the vectors of the unrelated class -1 and the
related class 2 in vector space, we resorted to see the visual representations of their vectors
before and after cleaning. They are shown in figure 4.5:

35

[Before] [After]

Figure 4.5: Vectorial Representations of the Tweets Before and After Cleaning: Red is -1
and Blue is 2

The effect of tweet cleaning was extremely evident. Before cleaning we can see that
the tweets of the -1 class in red were spread out across all of the vector space. While
after cleaning they became more concentrated in the top and the tweets of class 2 in blue
remained concentrated in the center and in the bottom. Since this increased our chances
of getting a higher accuracy score, we decided to run both K-Fold Cross-Validation and
Grid Search Cross-Validation for this binary classification task to see which one would
outperform the other.

K-Fold Cross-Validation with 2 Classes: -1 and 2

We found that the best hyperparameters for this approach were:
Gamma = 0.0001, C = 10.0, Kernel = linear
The detailed results are reported in table 4.10:

Class Precision Recall F1-score Support
-1 0.72 0.75 0.74 327
2 0.68 0.64 0.66 268

Accuracy 0.70 595
Macro Average 0.70 0.70 0.70 595

Weighted Average 0.70 0.70 0.70 595
Model Accuracy 0.7025210084033613

Table 4.10: Report of the Results of the Quintenary K-Fold Cross-Validation Approach
for Classes: -1 and 2

The results we got were fair but not good enough, as 0.7 would be the upper-bound that
"classifier 2" would reach which was not favorable for us. Thus we tried Hyperparameter
Tuning using Grid Search Cross-Validation to see if we would get better results.

Hyperparameter Tuning using Grid Search Cross-Validation with 2 Classes: -1
and 2

We found that the best hyperparameters for this approach were:
Gamma = 0.05, C = 100.0, Kernel = rbf
The detailed results are reported in table 4.11:

36

Class Precision Recall F1-score Support
-1 0.71 0.75 0.73 327
2 0.67 0.63 0.65 268

Accuracy 0.70 595
Macro Average 0.69 0.69 0.69 595

Weighted Average 0.70 0.70 0.70 595
Model Accuracy 0.6974789915966386

Table 4.11: Report of the Results of the Quintenary Grid Search Cross-Validation Approach
for Classes: -1 and 2

Nearly identical results of the previous K-Fold Cross-Validation approach occurred, thus
we realized that with a small amount of data to train "classifier 2" with, we will not be
getting quality results. Therefore, we dropped this approach and we suggest experimenting
with it only if there are around 3000 tweets to train "classifier 2" with. We opted to crawl
for 552 more tweets and we retried K-Fold Cross-Validation and Hyperparameter Tuning
using Grid Search Cross-Validation for the multiclass classification task on our final dataset
of 3527 tweets.

4.1.13 K-Fold Cross-Validation

We used the same values for the previously mentioned hyperparameters and the best
combination we got was:
Gamma = 0.1, C = 100.0, Kernel = rbf
Thus, we set our SVM model with these hyperparameters and then we ran it on the test
set to get the following results shown in table 4.12:

Class Precision Recall F1-score Support
-1 0.64 0.85 0.73 381
0 0.55 0.40 0.47 210
1 0.59 0.23 0.33 115

Accuracy 0.61 706
Macro Average 0.59 0.49 0.51 706

Weighted Average 0.60 0.61 0.58 706
Model Accuracy 0.6147308781869688

Table 4.12: Report of the Results of the K-Fold Cross-Validation Approach with the Best
Hyperparameters

The SVM model achieved an accuracy of 0.6147308781869688 for the multiclass clas-
sification task, which is higher than the baseline by 3%. Precision for classes -1, 0 and 1
were 0.64, 0.55 and 0.59 respectively, all above average value. While for recall there were
more fluctuations, with the values being 0.85, 0.40 and 0.23 for all classes respectively.
The following figure 4.6 is a visual representation of the learning process and it shows how
much learning improved after K-Fold Cross-Validation on the 3527 tweets:

37

Figure 4.6: Visual Representation of the Learning Curve after K-Fold Cross-Validation

After that approach, we opted to see if Hyperparameter Tuning using Grid Search
Cross-Validation would perform better.

4.1.14 Hyperparameter Tuning using Grid Search Cross-Validation

The best hyperparameters for this approach were the same as the K-Fold Cross-Validation
one:
Gamma = 0.1, C = 100.0, Kernel = rbf
The full results we got are shown in the following table 4.13

Class Precision Recall F1-score Support
-1 0.64 0.85 0.73 381
0 0.55 0.40 0.47 210
1 0.59 0.23 0.33 115

Accuracy 0.61 706
Macro Average 0.59 0.49 0.51 706

Weighted Average 0.60 0.61 0.58 706
Model Accuracy 0.6147308781869688

Table 4.13: Report of the Results of the Grid Search Cross-Validation Approach

Overall, we were satisfied with our results since the overall accuracy was greater than
the majority baseline with above average values for precision. After exhausting our at-
tempts for the SVM classifier, it was a suitable time to start experimenting with other
Machine Learning algorithms to see if they would outperform it.

38

4.2 Naïve Bayes

Naïve Bayes [Webb, 2010] is a generative Machine Learning model [Ng and Jordan, 2002]
which utilizes Bayes’ Theorem [Joyce, 2003] in order to compute the conditional proba-
bilities of features, all while assuming that they are strongly conditionally independent.
Bayes’ Theorem is shown in the following equation 4.1:

P (y|X) =
P (X|y)
P (X)

P (y) (4.1)

• y is the class and X is the vector of features.

• P(y|X) is the posterior probability.

• P(X|y) is the maximum likelihood.

• P(y) is the prior probability.

• P(X) is the evidence.

For this approach, as well as all of the approaches that followed, we ran the exact same
pre-processing we used in the previous SVM approach in order to clean the tweets. We used
the Arabic fastText model but this time we paired it up with Scikit Learn’s Gaussian Naïve
Bayes model instead of the SVM one. Since the Gaussian Naïve Bayes model doesn’t have
hyperparameters, it is not possible to perform Hyperparameter Tuning and we simply fit
our data to the model and ran it to predict the labels as shown in the snippet of code below:

from sklearn.naive_bayes import GaussianNB
#Create a Gaussian NB Classifier
gnb = GaussianNB()
#Train the model using the training set
gnb.fit(training_tweets_vectors, training_labels_array)
#Predict the results on the testing set
predicted_labels = gnb.predict(testing_tweets_vectors)

The results we got are shown in the following table 4.14

Class Precision Recall F1-score Support
-1 0.69 0.49 0.57 381
0 0.39 0.53 0.45 210
1 0.35 0.46 0.40 115

Accuracy 0.50 706
Macro Average 0.48 0.49 0.47 706

Weighted Average 0.55 0.50 0.51 706
Model Accuracy 0.49575070821529743

Table 4.14: Report of the Results of the Gaussian Naïve Bayes Approach

We got an overall accuracy of 0.49575070821529743 which was quite less than our
previously set baseline accuracy of 0.58195211786372. Therefore, the Gaussian Naïve
Bayes approach performed quite poorly and we opted to try other algorithms.

39

4.3 K-Nearest Neighbors

K-Nearest Neighbors (KNN) [Altman, 1992] is a supervised Machine Learning model used
for both classification and regression. It is non-parametric, meaning that it does not make
any assumptions about the distribution of the data. In KNN classification, a new example’s
label is assigned to the majority class of it’s K-Nearest Neighbors. For example in figure 4.7,
if K=2 (meaning that the number of neighbors is equal to 2), the new example represented
by the green circle will get assigned to the red triangle class since its 2 nearest neighbors
are red triangles.

Figure 4.7: Visual Representation of the K-Nearest Neighbors Classifier [Wikipedia, 2007]

The pseudocode that governs KNN is shown below:

for all test examples x do
for all training examples (xi,yi) do

compute distance d(x,xi)
end for
select the K-Nearest Neighbors of x
return class of x as majority class among neighbors:

argmaxy

κ∑
i=1

σ(y, yi)

end for

We performed the same pre-processing done for the previous algorithms, but we used Scikit
Learn’s KNeighborsClassifier. After that, we ran K-Fold Cross-Validation and Hyperpa-
rameter Tuning using Grid Search Cross-Validation.

4.3.1 K-Fold Cross Validation

Since the hyperparameters for the K-Nearest Neighbors algorithm are different than SVM’s
hyperparameters, we explained KNN’s ones below:

• N_neighbors: which is the number of neighbors that a new example should take into
consideration upon classification (previously denoted as K).

40

• Weights: which is the weight function used in the predictions. It determines if all
examples are weighted equally or not.

• Metric: which is the type of distance to be measured between the new example and
its corresponding neighbors.

The snippet of code below shows our choices for all of these parameters:

n_neighbors = [3,5,7]
weights = [’uniform’,’distance’]
metric = [’euclidean’,’manhattan’]

We performed K-Fold Cross-Validation by trying 12 different combinations of hyperpa-
rameters based on the values mentioned above. The code that explains this process is
shown below:

try:
from sklearn.model_selection import KFold, cross_val_score
legacy = False

except ImportError:
from sklearn.cross_validation import KFold, cross_val_score
legacy = True

if legacy:
kf = KFold(len(training_labels),n_folds=10, shuffle=True, random_state=42)

else:
kf = KFold(n_splits=10, shuffle=True, random_state=42)

n_neighbors = [3,5,7]
weights = [’uniform’,’distance’]
metric = [’euclidean’,’manhattan’]
accuracy_scores = []
the_neighbors=[]
the_weights=[]
the_metrics=[]

from sklearn.neighbors import KNeighborsClassifier

for neighbor in n_neighbors:
for weight in weights:

for m in metric:
knn = KNeighborsClassifier(n_neighbors=neighbor, weights=weight,

metric=m)
if legacy:

scores = cross_val_score(knn, training_tweets_vectors,
training_labels_array, cv=kf, scoring=’accuracy’)

else:
scores = cross_val_score(knn, training_tweets_vectors,

training_labels_array, cv=kf.split(training_tweets_vectors),
scoring=’accuracy’)

accuracy_score = scores.mean()
accuracy_scores.append(accuracy_score)
the_neighbors.append(neighbor)
the_weights.append(weight)
the_metrics.append(m)

41

best_index = np.array(accuracy_scores).argmax()
best_neighbor = the_neighbors[best_index]
best_weight = the_weights[best_index]
best_metric = the_metrics[best_index]
print("The best combination of hyperparameters is:

Neighbors=",str(best_neighbor),"\t","Weights=",str(best_weight),"\t",
"Metric=",str(best_metric))

After trying out all of the possible hyperparameter combinations, we got that the best
one was:
N_neighbors = 7, Weights = distance, Metric = euclidean
Therefore, we set our K-Nearest Neighbor model with these hyperparameters and then we
ran it to predict on the test set as shown below:

knn = KNeighborsClassifier(n_neighbors=best_neighbor, weights=best_weight,
metric=best_metric)

knn.fit(training_tweets_vectors, training_labels_array)

predicted_labels = knn.predict(testing_tweets_vectors)

Our classification results are shown in the following table 4.15:

Class Precision Recall F1-score Support
-1 0.64 0.76 0.69 381
0 0.42 0.41 0.41 210
1 0.52 0.19 0.28 115

Accuracy 0.57 706
Macro Average 0.53 0.45 0.46 706

Weighted Average 0.55 0.57 0.54 706
Model Accuracy 0.5651558073654391

Table 4.15: Report of the Results of the K-Fold Cross-Validation Approach with the Best
Hyperparameters

The model accuracy we got was 0.5651558073654391, which is a bit less than the
baseline accuracy of 0.58195211786372. This means that the K-Nearest Neighbor algo-
rithm performed badly like its previous Naïve Bayes counterpart and we opted to see if
Hyperparameter Tuning using Grid Search Cross-Validation would improve the results.

4.3.2 Hyperparameter Tuning using Grid Search Cross-Validation

The parameters that we chose were the same ones we had previously mentioned and we
used Scikit Learn’s GridSearchCV estimator as show in the code below:

try:
from sklearn.model_selection import GridSearchCV

except ImportError:
from sklearn.grid_search import GridSearchCV

possible_parameters = {
’n_neighbors’: [3,5,7],
’weights’: [’uniform’,’distance’],
’metric’: [’euclidean’,’manhattan’]

42

}

from sklearn.neighbors import KNeighborsClassifier

knn = GridSearchCV(KNeighborsClassifier(), possible_parameters, n_jobs=4, cv=3)
knn.fit(training_tweets_vectors, training_labels_array)
print("Best parameters: ",knn.best_params_)

predicted_labels = knn.predict(testing_tweets_vectors)

The best hyperparameters for this approach were:
N_neighbors = 7, Weights = uniform, Metric = manhattan
The full results we got are shown in the following table 4.16

Class Precision Recall F1-score Support
-1 0.61 0.80 0.69 381
0 0.42 0.38 0.40 210
1 0.50 0.10 0.16 115

Accuracy 0.56 706
Macro Average 0.51 0.42 0.42 706

Weighted Average 0.54 0.56 0.52 706
Model Accuracy 0.5580736543909348

Table 4.16: Report of the Results of the Grid Search Cross-Validation Approach

This approach scored an accuracy of 0.5580736543909348, which was even less than
the K-Fold Cross-Validation approach. Therefore, we believed that K-Nearest Neighbors
algorithm performed poorly for this classification task and we resorted to keep trying other
algorithms to see if they would outperform it.

4.4 Random Forests

Random Forests [Ho, 1995] is an ensemble learning approach [Opitz and Maclin, 1999] that
consists of a large number of decision trees [Breiman, 2017], each of which classifies a new
example independently. The final classification result will be the majority label of all of
the decision trees as shown in figure 4.8 below:

43

Figure 4.8: Visual Representation of the Random Forests Classifier [Medium, 2017]

For this approach, we performed the same pre-processing we had already done with
the other algorithms and we used Scikit Learn’s RandomForestClassifier. Since Random
Forests have hyperparameters to tune, we performed model selection by using K-Fold
Cross-Validation and Hyperparameter Tuning using Grid Search Cross-Validation.

4.4.1 K-Fold Cross-Validation

Random Forests have their own hyperparameters, thus we opted to explain them below:

• N_estimators: which is the number of trees in the forest.

• Max_depth: which is the maximum depth that the trees can reach.

• Min_samples_split: which is the minimum number of samples required to split an
internal node.

• Min_samples_leaf: which is the minimum number of samples required to be at a
leaf node.

The values we chose for the hyperparameters are shown in the snippet of code below:

n_estimators = [100, 300, 500, 800, 1200]
max_depth = [5, 8, 15, 25, 30]
min_samples_split = [2, 5, 10, 15, 100]
min_samples_leaf = [1, 2, 5, 10]

We performed K-Fold Cross-Validation with 500 different possible combinations of
hyperparameters:

try:
from sklearn.model_selection import KFold, cross_val_score
legacy = False

except ImportError:
from sklearn.cross_validation import KFold, cross_val_score

44

legacy = True

if legacy:
kf = KFold(len(training_labels),n_folds=10, shuffle=True, random_state=42)

else:
kf = KFold(n_splits=10, shuffle=True, random_state=42)

n_estimators = [100, 300, 500, 800, 1200]
max_depth = [5, 8, 15, 25, 30]
min_samples_split = [2, 5, 10, 15, 100]
min_samples_leaf = [1, 2, 5, 10]
accuracy_scores = []
the_estimators=[]
the_depths=[]
the_min_splits=[]
the_min_leaves=[]

from sklearn.ensemble import RandomForestClassifier

for estimator in n_estimators:
for depth in max_depth:

for min_sample_split in min_samples_split:
for min_sample_leaf in min_samples_leaf:

rf = RandomForestClassifier(n_estimators=estimator, max_depth=depth,
min_samples_split=min_sample_split,min_samples_leaf=min_sample_leaf)

if legacy:
scores = cross_val_score(rf, training_tweets_vectors,

training_labels_array, cv=kf, scoring=’accuracy’)
else:

scores = cross_val_score(rf, training_tweets_vectors,
training_labels_array, cv=kf.split(training_tweets_vectors),
scoring=’accuracy’)

accuracy_score = scores.mean()
accuracy_scores.append(accuracy_score)
the_estimators.append(estimator)
the_depths.append(depth)
the_min_splits.append(min_sample_split)
the_min_leaves.append(min_sample_leaf)

best_index = np.array(accuracy_scores).argmax()
best_estimator = the_estimators[best_index]
best_depth = the_depths[best_index]
best_split = the_min_splits[best_index]
best_leaf = the_min_leaves[best_index]
print("The best combination of hyperparameters is:

Estimators=",str(best_estimator),"\t","Depth=",str(best_depth),"\t",
"min_samples_split=",str(best_split),"\t","min_samples_leaf=",str(best_leaf))

The best combination of hyperparameters turned out to be the following:
N_estimators = 500, Max_depth = 15, Min_samples_split = 10, Min_samples_leaf =
2
After we got the best combination, we set it on our Random Forests model and we ran it
to predict on the test set:

rf = RandomForestClassifier(n_estimators=best_estimator, max_depth=best_depth,
min_samples_split=best_split,min_samples_leaf=best_leaf)

rf.fit(training_tweets_vectors, training_labels_array)

45

predicted_labels = rf.predict(testing_tweets_vectors)

The results we got are shown in table 4.17:

Class Precision Recall F1-score Support
-1 0.57 0.97 0.72 381
0 0.57 0.14 0.23 210
1 1.00 0.03 0.05 115

Accuracy 0.57 706
Macro Average 0.71 0.38 0.33 706

Weighted Average 0.64 0.57 0.46 706
Model Accuracy 0.5694050991501416

Table 4.17: Report of the Results of the K-Fold Cross-Validation Approach with the Best
Hyperparameters

The Random Forests model achieved a near perfect recall of 0.97 for class -1 with a
precision of 0.57 which was above average. For class 0, it achieved the same precision of
class -1 but with a much less recall of 0.14. As far as class 1 is concerned, it achieved
a perfect precision of 1.00 but a terrible recall of 0.03. The overall accuracy that this
model yielded was 0.5694050991501416, which was still less than the baseline accuracy of
0.58195211786372. This means that it performed poorly and we opted to see if Hyperpa-
rameter Tuning using Grid Search Cross-Validation would outperform it.

4.4.2 Hyperparameter Tuning using Grid Search Cross-Validation

For this part of our research, we used the same hyperparameters that we previously men-
tioned, in addition to Scikit Learn’s GridSearchCV estimator:

try:
from sklearn.model_selection import GridSearchCV

except ImportError:
from sklearn.grid_search import GridSearchCV

possible_parameters = {
’n_estimators’: [100, 300, 500, 800, 1200],
’max_depth’: [5, 8, 15, 25, 30],
’min_samples_split’: [2, 5, 10, 15, 100],
’min_samples_leaf’: [1, 2, 5, 10]

}

from sklearn.ensemble import RandomForestClassifier

rf = GridSearchCV(RandomForestClassifier(), possible_parameters, n_jobs=4, cv=3)
rf.fit(training_tweets_vectors, training_labels_array)
print("Best parameters: ",rf.best_params_)

predicted_labels = rf.predict(testing_tweets_vectors)

The best combination of hyperparameters we got for this approach was:
N_estimators = 300, Max_depth = 30, Min_samples_split = 2, Min_samples_leaf = 1
Our results are detailed in table 4.18:

46

Class Precision Recall F1-score Support
-1 0.58 0.96 0.72 381
0 0.57 0.17 0.26 210
1 0.86 0.05 0.10 115

Accuracy 0.58 706
Macro Average 0.67 0.39 0.36 706

Weighted Average 0.62 0.58 0.48 706
Model Accuracy 0.5779036827195467

Table 4.18: Report of the Results of the Grid Search Cross-Validation Approach

This approach scored an accuracy of 0.5779036827195467 with nearly identical results
to the previous K-Fold Cross-Validation approach. Since it was still less than the majority
baseline, we decided to keep trying other algorithms.

4.5 Logistic Regression

Logistic Regression [Kleinbaum et al., 2002] is a supervised Machine Learning algorithm
used for classification. It uses a Sigmoid Activation Function [Han and Moraga, 1995]
as its cost function instead of a linear function in order to map the predicted labels to
their corresponding probabilities. The following figure 4.9 shows the Logistic Regression
approach in action in a binary classification task:

Figure 4.9: Visual Representation of the Logistic Regression Classifier in a Binary Classi-
fication Task [HelloAcm, 2016]

We used the same pre-processing technique of all the aforementioned algorithms, but
this time we paired it up with Scikit Learn’s LogisticRegression library and then we ran
K-Fold Cross-Validation and Hyperparameter Tuning using Grid Search Cross-Validation.

4.5.1 K-Fold Cross-Validation

Since Logistic Regression has its own hyperparameters, we explained them below:

47

• C: which is the same regularization parameter previously explained in the Support-
Vector Machines section.

• Penalty: which is the penalty added to the Sigmoid Activation Function in order to
prevent overfitting.

The values we chose for both of these hyperparameters are denoted in the code below:

C = np.logspace(0, 4, 10) #the numbers on a log scale
penalty = [’l1’, ’l2’]

We performed K-Fold Cross-Validation on 20 different combinations of hyperparameters:

try:
from sklearn.model_selection import KFold, cross_val_score
legacy = False

except ImportError:
from sklearn.cross_validation import KFold, cross_val_score
legacy = True

if legacy:
kf = KFold(len(training_labels),n_folds=10, shuffle=True, random_state=42)

else:
kf = KFold(n_splits=10, shuffle=True, random_state=42)

C = np.logspace(0, 4, 10)
penalty = [’l1’, ’l2’]
accuracy_scores = []
the_Cs=[]
the_penalties=[]

from sklearn.linear_model import LogisticRegression

for v in C:
for p in penalty:

logreg = LogisticRegression(C=v,penalty=p)
if legacy:

scores = cross_val_score(logreg, training_tweets_vectors,
training_labels_array, cv=kf, scoring=’accuracy’)

else:
scores = cross_val_score(logreg, training_tweets_vectors,

training_labels_array, cv=kf.split(training_tweets_vectors),
scoring=’accuracy’)

accuracy_score = scores.mean()
if np.isnan(accuracy_score):

accuracy_score=0 #skipped nan
accuracy_scores.append(accuracy_score)
the_Cs.append(v)
the_penalties.append(p)

best_index = np.array(accuracy_scores).argmax()
best_C = the_Cs[best_index]
best_penalty = the_penalties[best_index]
print("The best combination of hyperparameters is: C=",str(best_C),"\t","

Penalty=",str(best_penalty))

48

The combination of hyperparameters that prevailed was the following:
C = 21.544346900318832, Penalty = l2
Once we got our best hyperparameters, we set them on the Logistic Regression model and
we ran it to predict on the test set like the following code shows:

logreg = LogisticRegression(C=best_C, penalty=best_penalty)
logreg.fit(training_tweets_vectors, training_labels_array)

predicted_labels = logreg.predict(testing_tweets_vectors)

The results we got are shown in table 4.19:

Class Precision Recall F1-score Support
-1 0.65 0.84 0.73 381
0 0.57 0.42 0.48 210
1 0.57 0.28 0.37 115

Accuracy 0.62 706
Macro Average 0.60 0.51 0.53 706

Weighted Average 0.61 0.62 0.60 706
Model Accuracy 0.623229461756374

Table 4.19: Report of the Results of the K-Fold Cross-Validation Approach with the Best
Hyperparameters

This accuracy of 0.623229461756374 exceeded the baseline by around 4%, which was
quite a good improvement for the multiclass classification task on our final dataset of 3527
tweets. Precision for all 3 classes hovered around 0.6, with recall for the -1 class achieving
an impressive score of 0.84. Recall for the 0 class achieved a near average score of 0.42,
while for class 1 it scored poorly with 0.28. Overall, we were satisfied with the results and
we opted to try Hyperparameter Tuning using Grid Search Cross-Validation like we did
with the other algorithms to see if this accuracy might increase.

4.5.2 Hyperparameter Tuning using Grid Search Cross-Validation

We used the GridSearchCV estimator as shown below:

try:
from sklearn.model_selection import GridSearchCV

except ImportError:
from sklearn.grid_search import GridSearchCV

penalty = [’l1’, ’l2’]
C = np.logspace(0, 4, 10)
possible_parameters = dict(C=C, penalty=penalty)

from sklearn.linear_model import LogisticRegression

logreg = GridSearchCV(LogisticRegression(), possible_parameters, n_jobs=4, cv=3)
logreg.fit(training_tweets_vectors, training_labels_array)
print("Best parameters: ",logreg.best_params_)

The best hyperparameters and results we got for this approach were the same ones we got
in the previous K-Fold Cross-Validation approach:

49

C = 21.544346900318832, Penalty = l2
The results are detailed in table 4.20:

Class Precision Recall F1-score Support
-1 0.65 0.84 0.73 381
0 0.57 0.42 0.48 210
1 0.57 0.28 0.37 115

Accuracy 0.62 706
Macro Average 0.60 0.51 0.53 706

Weighted Average 0.61 0.62 0.60 706
Model Accuracy 0.623229461756374

Table 4.20: Report of the Results of the Grid Search Cross-Validation Approach

Since the Grid Search Cross-Validation approach provided us with the same results of
the K-Fold Cross-Validation approach, we decided to try to see if the final Voting Classifier
explained in the next section would outperform all of the previous algorithms.

4.6 Voting Classifier

The Voting Classifier is an ensemble learning approach that gets fed with other Machine
Learning classifiers, learns from their inaccuracies and votes for the class that they pre-
dicted in two ways:

• Hard Voting: which is voting based on the majority class that the models predicted.

• Soft Voting: which is voting based on the maximum probability for each predicted
class.

Figure 4.10 demonstrates a visual representation of the Voting Classifier:

Figure 4.10: Visual Representation of the Voting Classifier [Medium, 2019]

In this approach, we used Scikit Learn’s VotingClassifier and we fed it with all of the
previously explained classifiers with their best hyperparameters. Then we ran both the
Hard Voting and Soft Voting classifiers in order to see which one would score better.

50

4.6.1 Hard Voting

The code that shows how we fed the Machine Learning classifiers with their best
hyperparameters to the Hard Voting Classifier is shown below:

from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier, VotingClassifier

clf1 = LogisticRegression(C= 21.544346900318832, penalty=’l2’)
clf2 = RandomForestClassifier(max_depth = 30, min_samples_leaf= 1,

min_samples_split=2, n_estimators= 300)
clf3 = SVC(C=100, gamma=0.1, kernel=’rbf’, probability=True)
clf4 = GaussianNB()
clf5 = KNeighborsClassifier(metric = ’manhattan’, n_neighbors = 7, weights =

’uniform’)

eclf1 = VotingClassifier(estimators=[(’lr’, clf1), (’rf’, clf2), (’svm’, clf3),
(’gnb’, clf4),(’knn’, clf5)], voting=’hard’)

eclf1.fit(training_tweets_vectors, training_labels_array)

predicted_labels = eclf1.predict(testing_tweets_vectors)

The results we got for this approach are shown in table 4.21:

Class Precision Recall F1-score Support
-1 0.63 0.90 0.74 381
0 0.61 0.37 0.46 210
1 0.66 0.18 0.29 115

Accuracy 0.63 706
Macro Average 0.63 0.48 0.50 706

Weighted Average 0.63 0.63 0.58 706
Model Accuracy 0.6260623229461756

Table 4.21: Report of the Results of the Hard Voting Classifier Approach

This approach was the highest scoring one in our entire research with an overall classi-
fication accuracy of 0.6260623229461756. Precision was above average for classes -1, 0 and
1 with their values being 0.63, 0.61 and 0.66 respectively. As far as recall is concerned,
its values were 0.90 for class -1, 0.37 for class 0 and 0.18 for class 1. Despite the fact that
recall for the last two classes was below average, the results were quite acceptable since
the overall classification accuracy exceeded the baseline by around 4%. Nevertheless, we
opted to see how well would the Soft Voting approach score in comparison to the Hard
Voting one.

4.6.2 Soft Voting

The following code shows how we fed the Machine Learning classifiers with their best
hyperparameters to the Soft Voting classifier:

from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC

51

from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier, VotingClassifier

clf1 = LogisticRegression(C= 21.544346900318832, penalty=’l2’)
clf2 = RandomForestClassifier(max_depth = 30, min_samples_leaf= 1,

min_samples_split=2, n_estimators= 300)
clf3 = SVC(C=100, gamma=0.1, kernel=’rbf’, probability=True)
clf4 = GaussianNB()
clf5 = KNeighborsClassifier(metric = ’manhattan’, n_neighbors = 7, weights =

’uniform’)

eclf2 = VotingClassifier(estimators=[(’lr’, clf1), (’rf’, clf2), (’svm’, clf3),
(’gnb’, clf4),(’knn’, clf5)], voting=’soft’)

eclf2.fit(training_tweets_vectors, training_labels_array)

predicted_labels = eclf2.predict(testing_tweets_vectors)

The results we got are shown in table 4.22:

Class Precision Recall F1-score Support
-1 0.69 0.78 0.73 381
0 0.52 0.50 0.51 210
1 0.50 0.33 0.40 115

Accuracy 0.62 706
Macro Average 0.57 0.54 0.55 706

Weighted Average 0.61 0.62 0.51 706
Model Accuracy 0.623229461756374

Table 4.22: Report of the Results of the Soft Voting Classifier Approach

The Soft Voting approach garnered an overall accuracy of 0.623229461756374 which
was nearly identical to the accuracy of its Hard Voting counterpart. Despite the fact that
their accuracies were very similar, this approach performed better on recall with more
balanced values. Two thirds of the recall values were greater than or equal to 0.50 : being
0.78 for class -1 and 0.50 for class 0. Class 1 had a recall of 0.33 which was still greater
than its recall value for the Hard Voting approach that amounted to 0.18. As far as
precision is concerned, the values for all classes were greater than or equal to 0.50 as
classes -1, 0, 1 achieved precision values of 0.69, 0.52 and 0.50 respectively.

At the end of our research, we had tried 17 different unique approaches which were the
following:

1. SVM without K-Fold Cross-Validation nor Hyperparameter Tuning using Grid Search
Cross-Validation

2. SVM with K-Fold Cross-Validation

3. SVM with Hyperparameter Tuning using Grid Search Cross-Validation

4. SVM with K-Fold Cross-Validation and Further Tweet Pre-processing

5. SVM with Hyperparameter Tuning using Grid Search Cross-Validation and Further
Tweet Pre-processing

6. SVM with K-Fold Cross-Validation and Splitting Hashtags

52

7. SVM with Hyperparameter Tuning using Grid Search Cross-Validation and Splitting
Hashtags

8. SVM with the 2 Classes Approach

9. Naïve Bayes

10. K-Nearest Neighbors with K-Fold Cross-Validation

11. K-Nearest Neighbors with Hyperparameter Tuning using Grid Search Cross-
Validation

12. Random Forests with K-Fold Cross-Validation

13. Random Forests with Hyperparameter Tuning using Grid Search Cross-Validation

14. Logistic Regression with K-Fold Cross-Validation

15. Logistic Regression with Hyperparameter Tuning using Grid Search Cross-Validation

16. Hard Voting Classifier

17. Soft Voting Classifier

All of our final results along with their corresponding error analysis were discussed in
the following section.

53

Chapter 5

Results and Error Analysis

5.0.1 Results

The results for all the approaches we conducted, including their overall accuracies are
detailed in table 5.1 in chronological order. It is important to mention that everything
colored in grey means that this is the majority baseline. Everything in white signifies
that these were the intermediate steps that led to the valid approaches that are in green.
By valid approaches we mean that they scored higher than the majority baseline in the
multiclass classification task of the 3527 tweets. Everything colored in red means that
they were either for the binary classification task that we discarded, or algorithms that
were for the multiclass classification task but that scored less than the majority baseline
and were consequently discarded.

Approach Number of
Tweets

Macro Avg.
F1-Score

Weighted Avg.
F1-Score

Overall
Accuracy

SVM without CV
nor Grid Search CV 2715 0.25 0.43

0.5819
(majority
baseline)

SVM with CV 2715 0.25 0.44
0.5837

(majority
baseline)

SVM with Grid
Search CV 2715 0.54 0.62 0.6372

SVM with CV
and Further Tweet
Pre-processing

2715 0.52 0.61 0.6298

SVM with Grid
Search CV and
Further Tweet
Pre-processing

2715 0.55 0.62 0.6372

SVM with CV and
Splitting Hashtags 2975 0.52 0.60 0.6302

SVM with Grid
Search CV and

Splitting Hashtags
2975 0.53 0.61 0.6336

SVM with CV 3527 0.51 0.58 0.6147
SVM with Grid

Search CV 3527 0.51 0.58 0.6147

54

SVM with CV
on 2 Classes: 0 and 1 1240 0.70 0.75 0.7620

SVM with Grid
Search CV on 2 Classes:

0 and 1
1240 0.70 0.75 0.7661

SVM with CV
on 2 Classes: -1 and 2 2975 0.70 0.70 0.7025

SVM with Grid
Search CV on 2 Classes:

-1 and 2
2975 0.69 0.70 0.6974

Naïve Bayes 3527 0.47 0.51

0.4957
(less than

the majority
baseline)

K-Nearest Neighbors
with CV 3527 0.46 0.54

0.5651
(less than

the majority
baseline)

K-Nearest Neighbors
with Grid Search CV 3527 0.42 0.52

0.5580
(less than

the majority
baseline)

Random Forests with CV 3527 0.33 0.46

0.5694
(less than

the majority
baseline)

Random Forests with
Grid Search CV 3527 0.36 0.48

0.5779
(less than

the majority
baseline)

Logistic Regression
with CV 3527 0.53 0.60 0.6232

Logistic Regression
with Grid Search CV 3527 0.53 0.60 0.6232

Hard Voting Classifier 3527 0.50 0.58 0.6260
Soft Voting Classifier 3527 0.55 0.51 0.6232

Table 5.1: Report of the Results of all of the Machine Learning Approaches

The results clearly showed that the best performing algorithms sorted by ascending
order (overall accuracy) for the multiclass classification scenario of the 3527 tweets were:

• Support-Vector Machines: with an overall accuracy of 0.6147 , a macro average
F1-score of 0.51 and a weighted average F1-score of 0.58.

• Soft Voting Classifier: with an overall accuracy of 0.6232 , a macro average
F1-score of 0.55 and a weighted average F1-score of 0.51.

• Logistic Regression: with an overall accuracy of 0.6232 , a macro average F1-score
of 0.53 and a weighted average F1-score of 0.60.

• Hard Voting Classifier: with an overall accuracy of 0.6260 , a macro average
F1-score of 0.50 and a weighted average F1-score of 0.58.

55

The approach that we preferred over all others based on our results was the Soft Voting
Classifier even if it was not the highest scoring one. This is due to the fact that its values
for both precision and recall 4.22 were the most balanced between all classes in comparison
to all of the other approaches. In addition to that, its overall classification accuracy of
0.6232 was quite acceptable, exceeding the majority baseline by around 4%, which meant
that this model actually learned from our data.

That was a suitable time to see what perception of Arabs on migration to Europe our
Soft Voting Classifier identified. To properly explain this perception, we first opted to
mention how our dataset was composed at the end. It consisted of a total of 3527 tweets:

• 2049 tweets were annotated as -1 and consequently did not count in our perception
identification.

• 970 tweets were annotated as 0, thus they exhibited a negative perception on migra-
tion to Europe.

• 508 tweets were annotated as 1, thus they exhibited a positive perception on migra-
tion to Europe.

Therefore, there was a total of 1478 tweets in our entire dataset that contributed into
perception identification with 65.6% of them having a negative perception on migration
to Europe and the rest 34.4% having a positive perception on migration to Europe.
Thus in "real life", we concluded that the perception of Arabs on migration to Europe
is negative. We wanted to see if our classifier’s results would align with this "real life"
perception after predicting on the testing set.

706 random tweets of the aforementioned dataset were used for testing:

• 381 tweets were annotated as -1 and consequently did not count in our perception
identification.

• 210 tweets were annotated as 0, thus they exhibited a negative perception on migra-
tion to Europe.

• 115 tweets were annotated as 1, thus they exhibited a positive perception on migra-
tion to Europe.

Therefore, there was a total of 325 tweets in the testing set that contributed into perception
identification. Our results showed that the Soft Voting Classifier correctly classified 105
tweets out of the 210 tweets as having a negative perception on migration to Europe. In
addition to that, it classified 38 tweets out of the 115 tweets as having a positive perception
on migration to Europe. Therefore, it detected that 80.4% of tweets carried a negative
perception on migration to Europe with an overall classification accuracy of 62.32% .
Based on our findings, we can confidently say that our model did an above average job in
identifying if Arabs have a positive or negative perception on migration to Europe. This
perception turned out to be mostly negative, which aligns perfectly with the "real life"
perception we had previously inferred. We are aware that such a small sample of tweets
might not reflect the perception of all Arabs on migration to Europe, therefore we stress
on the fact that further data is needed to identify a more accurate perception.

5.0.2 Error Analysis

Our Soft Voting Classifier misclassified a total of 267 tweets out of 706 tweets. Con-
sequently, we decided to try to analyze some tweets that were misclassified in order
to determine the reasons behind these errors. Some cleaned tweets in addition to our
proposed misclassification reasons are mentioned below:

56

• Bias because of one word:
First Tweet Example:

�
èQå

�
�ªË@ ø

Aë ¼ðYîE
ð ÐAK

@

�
èQå

�
�« 	áêÊ¿

	
à

B

	
¢

	
mÌ'@

	
àñ

	
¯A

	
m�

�
'B

	á�
J

	
KYÖÏ @

	á�
¢
�

�A
	
JÊË

�
éJ.�

	
�ËAK."

" A¾K
QÓ@ AK. ðPð

@ ÈðYË Zñm.

Ì I. Ê¢
�
� ¼YJ

	
®
�
K h@P ÐAK

@

=> "For what concerns civil rights activists, do not be scared of kidnapping because
it’ll just be ten days and you will be released. These ten days will benefit you to ask
for asylum in European countries or America".

Correct Label: 1
Predicted Label: 0

In this tweet, we analyzed that the algorithm might have been biased towards the
word " 	

¢
	
mÌ'@" => "Kidnapping", and thus predicted the entire tweet as negative

while actually it was positive since it revealed the individual’s implicit desire to
migrate to Europe.

Second Tweet Example:

ÑëXYë H. Q
	
ªË @ X@ñ

�
¯ Ðñj. ë YªK. ð ÐC�Ë@ ©J.

	
K

�
éJ
ÊÔ

« øYK.
�

HA«A� YJ
ªK. é
	
K @

	
àA

	
«ðXP@ Õæ

« 	QË @ ZA¿

	
X"

@ðPA�
	á�
J
ÖÞ

�QË @ H. Q
	
ªË @

�
èXA

�
¯ Ñ

	
¢ªÓ AK. ðPð@

�
é
	
Jk. úÍ@ @ñJ.ë

	
YK

	
à@ úk

.
B

	
àñJ
ÊÓ È iÒ��
 AÖß.P é

	
K

AK.

" 	
�

�
¯A

	
J
�
JÓ ÕËA« éêêë AëXðYg ¨A

	
¯YË@

�
�mÌ'@

	
à@ð AJ
»Q

�
K ©

	
¯ @ðX

	
àñÒê

	
®
�
JK

=> "The intelligence of the leader ’Erdogan’: he is hours away from starting Oper-
ation Peace Spring, and after the attack of the pimps of the West, he threatened
them that he might allow 1 million refugees to go to the paradise of Europe. Most
official leaders of the West are now aware of Turkey’s intentions and that it has the
right to defend its borders, hahaha such a contradictory world".

Correct Label: 1
Predicted Label: -1

Like the previous tweet, we reasoned that this one might be biased by a word which we
believed was " 	

àA
	
«ðXP@" => "Erdogan". This word was present in around 500 tweets

in our dataset and its related tweets were mostly classified as unrelated due to news
about Erdogan’s threats to the European Union regarding migration. Therefore, the
algorithm probably saw the word "Erdogan" and classified the tweet as unrelated.
But it failed to value the most important sentence which was " AK. ðPð@

�
é
	
Jk. " => "The

paradise of Europe" which clearly showed that Europe was portrayed positively as a
paradise. Thus this tweet should have been classified as carrying a positive perception
about Europe.

• Use of sophisticated Arabic:

" 	á�

�
KQj. êË @

	
àA

�
J

�
�

	
¯ YJ
kñ

�
JË @ YÊK.

�
èQj. êË @

	
àñ

	
JÒ

�
JK

	
àñÒJ

�
®
�
J�ÖÏ @ ð AK. ðPð

@

�
èQj. êË @

	
àñ

	
JÒ

�
JK
 Ð@ñªË@"

57

=> "Common people wish to migrate to Europe and rational people wish to mi-
grate to the country of monotheism, and what a difference between both migrations".

Correct Label: 0
Predicted Label: 1

This eloquent use of Arabic mislead the classifier, as it fell into the trap of classifying
the tweet as positive just because of the sentence "Common people wish to migrate
to Europe", while it didn’t give the sentence "Rational people wish to migrate to the
country of monotheism" a bigger weight. If it had given it a bigger weight, it would
have classified the tweet correctly as carrying a negative perception on migration to
Europe.

• Use of dialectal Arabic:

" �
éÓC�Ë@ ©Óð Q

	
k@ñK. ð

�
H@PAJ
£

	áÊ
�
JªJ.

�
�K.

	
àAÒ»ð

�
èQj. ë

	Q�

	
¯ 	áîD
¢ª

�
JK. ø

Q

	
«X AK. ðPð@ ú

jJ
�Ó ú

	
k"

=> "Brother, Europe gives Christians immigration visas immediately and it also
sends them planes and ships. And goodbye".

Correct Label: 1
Predicted Label: -1

In this tweet, dialectal Arabic was used which is quite different than the majority
of the tweets that were in traditional Arabic and that the algorithm was trained on.
Therefore, the algorithm classified this tweet as unrelated while it should have been
classified as positive since it claimed that Europe pampers Christian immigrants.

• Connecting unconnectable words:
For explanatory purposes, we opted to intentionally connect the words in the English
translation.

h. @ð 	QK. AK. ðPð

@

�
IjÖÞ� AK. ðPð

@

	

	
K

@

�
AÔ

	
«P AK. Pð

@

	
àñÊ

	
gYK
 ø

Pñ� Zú

k
.
B

	
Ë

@

�
èQj. êË @ X@Qm.

Ì'@
�
é

�
�

�A«"

é
	
KAjJ.� É�Q�

	
¯ èPñ

	
K �Õ

�
æK
 é<Ë @ úG

.

AK
ð YK.

B@ úÍ@

P

�
Aj.

	
®Ë @ É�

	
� ©¢

�
®

	
JJ
Ë éËY«ð é<Ë @

�
éÒºk ½Ê

�
Kð

	á
�
�
J
Ê

�
JÖÏ @

" AK. ðPð

@

	á�
ÒÊ�ÖÏ @ É�
	
� X@X

	Q�

	
¯XCJ. Ë @ ½Ê

�
JË 	áK
Qk. AêÖÏ @

=> "Aisha Al-Jarad’s immigration: a thousand Syrian refugees enter Europe
whetherEurope likes it or not. Europe allowed gay marriage and that’s because
of God’s wisdom and his justice: may the offspring of immoralsBeCutOff forever.
And God refuses that His light fades, so He sends immigrants to those countries-
SoThatThereWillBeAnIncrease in the number of Muslim offspring in Europe".

Correct Label: 0
Predicted Label: -1

Due to the fact that many words were wrongly connected, they received one vector
all together which created noise in the data and eventually yielded more errors.
Therefore, this tweet was predicted as unrelated rather than negative.

58

• Writing English words with Arabic letters:

" AK. ðPð@ �ÊÓñë ú

k
.
B hðQ�

�K.
�

I
	
K@ ©J

	
��
K. Yg@ð Èð@"

=> "Due to the first one getting lost, you will go to Europe as a homeless refugee".

Correct Label: 0
Predicted Label: 1

In this tweet, the word "Homeless" was written in Arabic letters => "�ÊÓñë", which
is not an Arabic word. Therefore, the algorithm didn’t pick it up as a negative word
towards immigrants in Europe and it predicted the tweet as being positive rather
than negative.

• Use of metaphors:

@ñªk. QK
 hP
	á�
g

	PA
	
JË @ ½J
ë É

	
�

�
JK. @

	
X @ É

�
Jª

�
K hðY

�
®Ó ½

	
KQ

	
¯ð

�
éÊ��.

�
èQå

�
�
�
¯ øñ�

�
�K. ú

Í
�
@
�

�
éJ.�

	
�ËAK. A

	
K @ð"

"½J

	
Kñë ÑêªÓ 	áÓA

	
�

�
J
�
�K. hðQ�

�K. ú

»QK. AK. ðPð@ ¨ @ñk

	Q 	
�K

=> "To me, you are worth an onion’s crust and your oven is lit. If you remain like
this, migrants will re-immigrate to Europe and then maybe you will go and show
solidarity with them there".

Correct Label: -1
Predicted Label: 0

In this tweet, derogatory comments were written to another individual using a
metaphor. Due to this eloquent wording, the algorithm misclassified this tweet and
labeled it as negative while it should have been classified as unrelated.

59

Chapter 6

Conclusion and Further Research

In our research, we crawled 3527 tweets in Arabic related to migration to Europe on a span
of 3 months. Using these tweets, we created the first Arabic dataset on Arabs’ perceptions
on migration to Europe that we named "APME". We pre-processed the tweets and we
ran 17 unique machine learning approaches with 6 different machine learning algorithms
to try to identify if the aforementioned perception is positive or negative. We succeeded
in doing so, as our most optimal algorithm was the Soft Voting Classifier which had an
above average classification accuracy of 62.32%. It successfully identified this perception
as negative, which is exactly the same as the one we inferred from our dataset. Thus
it is safe to say that it is possible for a computer program to identify the perception of
Arabs on migration to Europe. Despite the fact that we achieved a fair classification
accuracy, it could have been quite higher had we crawled more tweets. In addition to
that, the use of Deep Learning algorithms merged with advanced NLP techniques might
have rendered higher quality results. Another approach that could have improved our
results was to try to disconnect unconnectable words, but we refrained from doing so as
it is quite a risky procedure. In a nutshell, we would say that for further research, having
around 15000 annotated tweets that will be used with an algorithm such as Convolutional
Neural Networks [Goodfellow et al., 2016] would probably improve precision, recall and
consequently improve the overall classification accuracy. This way, the sample of people
being studied would be bigger and this would eventually yield a more global and accurate
perception.

60

Bibliography

[Afsaruddin, 2019] Afsaruddin, A. (2019). Umayyad dynasty. https://www.britannica.
com/topic/Umayyad-dynasty-Islamic-history.

[Al-Smadi et al., 2018] Al-Smadi, M., Qawasmeh, O., Al-Ayyoub, M., Jararweh, Y., and
Gupta, B. (2018). Deep recurrent neural network vs. support vector machine for aspect-
based sentiment analysis of arabic hotels’ reviews. Journal of computational science,
27:386–393.

[Alayba et al., 2017] Alayba, A. M., Palade, V., England, M., and Iqbal, R. (2017). Arabic
language sentiment analysis on health services. In 2017 1st International Workshop on
Arabic Script Analysis and Recognition (ASAR), pages 114–118. IEEE.

[Altman, 1992] Altman, N. S. (1992). An introduction to kernel and nearest-neighbor
nonparametric regression. The American Statistician, 46(3):175–185.

[Augenstein et al., 2016] Augenstein, I., Rocktäschel, T., Vlachos, A., and Bontcheva,
K. (2016). Stance detection with bidirectional conditional encoding. arXiv preprint
arXiv:1606.05464.

[Baly et al., 2018] Baly, R., Mohtarami, M., Glass, J., Màrquez, L., Moschitti, A., and
Nakov, P. (2018). Integrating stance detection and fact checking in a unified corpus.
arXiv preprint arXiv:1804.08012.

[Bamman, 2017] Bamman, D. (2017). Lecture 5: Truth and ethics. http://people.
ischool.berkeley.edu/~dbamman/nlpF17/slides/5_truth_ethics.pdf.

[Bojanowski et al., 2017] Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. (2017).
Enriching word vectors with subword information. Transactions of the Association for
Computational Linguistics, 5:135–146.

[Breiman, 2017] Breiman, L. (2017). Classification and regression trees. Routledge.

[Bruns and Burgess, 2011] Bruns, A. and Burgess, J. E. (2011). The use of twitter hashtags
in the formation of ad hoc publics. In Proceedings of the 6th European Consortium for
Political Research (ECPR) General Conference 2011.

[Cheong et al., 2011] Cheong, H., Chiu, I., Shu, L., Stone, R. B., and McAdams, D. A.
(2011). Biologically meaningful keywords for functional terms of the functional basis.
Journal of Mechanical Design, 133(2):021007.

[Clifton et al., 2004] Clifton, C., Cooley, R., and Rennie, J. (2004). Topcat: Data mining
for topic identification in a text corpus. IEEE transactions on knowledge and data
engineering, 16(8):949–964.

[Cohen, 1960] Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational
and psychological measurement, 20(1):37–46.

61

https://www.britannica.com/topic/Umayyad-dynasty-Islamic-history
https://www.britannica.com/topic/Umayyad-dynasty-Islamic-history
http://people.ischool.berkeley.edu/~dbamman/nlpF17/slides/5_truth_ethics.pdf
http://people.ischool.berkeley.edu/~dbamman/nlpF17/slides/5_truth_ethics.pdf

[Cortes and Vapnik, 1995] Cortes, C. and Vapnik, V. (1995). Support-vector networks.
Machine learning, 20(3):273–297.

[Darwish et al., 2017] Darwish, K., Magdy, W., and Zanouda, T. (2017). Improved stance
prediction in a user similarity feature space. In Proceedings of the 2017 IEEE/ACM
international conference on advances in social networks analysis and mining 2017, pages
145–148. ACM.

[Facebook, 2020] Facebook (2020). Rate limits - graph api - documentation - face-
book for developers. https://developers.facebook.com/docs/graph-api/overview/
rate-limiting/.

[Fargues and Fandrich, 2012] Fargues, P. and Fandrich, C. (2012). Migration after the
arab spring. https://cadmus.eui.eu/handle/1814/23504.

[for Migration, 2010] for Migration, I. O. (2010). Intra-regional Labour Mobility in the
Arab World. IOM International Organization for Migration.

[Forin and Healy, 2018] Forin, R. and Healy, C. (2018). Trafficking along migra-
tion routes to europe: Bridging the gap between migration, asylum and anti-
trafficking. https://childhub.org/sites/default/files/webinars/bridging_the_
gap_between_migration_asylum_and_anti-trafficking.pdf.

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learn-
ing. MIT press.

[Han and Moraga, 1995] Han, J. and Moraga, C. (1995). The influence of the sigmoid func-
tion parameters on the speed of backpropagation learning. In International Workshop
on Artificial Neural Networks, pages 195–201. Springer.

[Hawkins, 2004] Hawkins, D. M. (2004). The problem of overfitting. Journal of chemical
information and computer sciences, 44(1):1–12.

[HelloAcm, 2016] HelloAcm (2016). Logistic regression. https://helloacm.com/wp-
content/uploads/2016/03/logistic-regression-example.jpg.

[Ho, 1995] Ho, T. K. (1995). Random decision forests. In Proceedings of 3rd international
conference on document analysis and recognition, volume 1, pages 278–282. IEEE.

[Huang et al., 2015] Huang, Z., Xu, W., and Yu, K. (2015). Bidirectional lstm-crf models
for sequence tagging. arXiv preprint arXiv:1508.01991.

[Java et al., 2007] Java, A., Song, X., Finin, T., and Tseng, B. (2007). Why we twitter:
understanding microblogging usage and communities. In Proceedings of the 9th WebKDD
and 1st SNA-KDD 2007 workshop on Web mining and social network analysis, pages
56–65. ACM.

[Joulin et al., 2016a] Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jégou, H., and
Mikolov, T. (2016a). Fasttext. zip: Compressing text classification models. arXiv
preprint arXiv:1612.03651.

[Joulin et al., 2016b] Joulin, A., Grave, E., Bojanowski, P., and Mikolov, T. (2016b). Bag
of tricks for efficient text classification. arXiv preprint arXiv:1607.01759.

[Joyce, 2003] Joyce, J. (2003). Bayes’ theorem. https://plato.stanford.edu/entries/
bayes-theorem/.

62

https://developers.facebook.com/docs/graph-api/overview/rate-limiting/
https://developers.facebook.com/docs/graph-api/overview/rate-limiting/
https://cadmus.eui.eu/handle/1814/23504
https://childhub.org/sites/default/files/webinars/bridging_the_gap_between_migration_asylum_and_anti-trafficking.pdf
https://childhub.org/sites/default/files/webinars/bridging_the_gap_between_migration_asylum_and_anti-trafficking.pdf
https://helloacm.com/wp-content/uploads/2016/03/logistic-regression-example.jpg
https://helloacm.com/wp-content/uploads/2016/03/logistic-regression-example.jpg
https://plato.stanford.edu/entries/bayes-theorem/
https://plato.stanford.edu/entries/bayes-theorem/

[Kleinbaum et al., 2002] Kleinbaum, D. G., Dietz, K., Gail, M., Klein, M., and Klein, M.
(2002). Logistic regression. Springer.

[Krejzl et al., 2017] Krejzl, P., Hourová, B., and Steinberger, J. (2017). Stance detection
in online discussions. arXiv preprint arXiv:1701.00504.

[Lafferty et al., 2001] Lafferty, J., McCallum, A., and Pereira, F. C. (2001). Conditional
random fields: Probabilistic models for segmenting and labeling sequence data. https://
repository.upenn.edu/cgi/viewcontent.cgi?article=1162&context=cis_papers.

[Landis and Koch, 1977] Landis, J. R. and Koch, G. G. (1977). The measurement of
observer agreement for categorical data. Biometrics, 33 1:159–74.

[Levenshtein, 1966] Levenshtein, V. I. (1966). Binary codes capable of correcting deletions,
insertions, and reversals. In Soviet physics doklady, volume 10, pages 707–710.

[Li et al., 2018] Li, P., Lu, H., Kanhabua, N., Zhao, S., and Pan, G. (2018). Location
inference for non-geotagged tweets in user timelines. IEEE Transactions on Knowledge
and Data Engineering, 31(6):1150–1165.

[Li et al., 2009] Li, Y.-R., Wang, L.-H., and Hong, C.-F. (2009). Extracting the significant-
rare keywords for patent analysis. Expert Systems with Applications, 36(3):5200–5204.

[Magdy et al., 2016] Magdy, W., Darwish, K., Abokhodair, N., Rahimi, A., and Baldwin,
T. (2016). # isisisnotislam or# deportallmuslims?: Predicting unspoken views. In
Proceedings of the 8th ACM Conference on Web Science, pages 95–106. ACM.

[Masood and Aker, 2018] Masood, R. and Aker, A. (2018). The fake news challenge:
Stance detection using traditional machine learning approaches. In KMIS.

[Medium, 2017] Medium (2017). Random forests. https://medium.com/
@williamkoehrsen/random-forest-simple-explanation-377895a60d2d.

[Medium, 2019] Medium (2019). The voting classifier. https://miro.medium.com/max/
241/1*9JlC4KdtYg4_pJ9TI1QKBw.png.

[Mikolov et al., 2013] Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.

[Mohammad et al., 2016] Mohammad, S., Kiritchenko, S., Sobhani, P., Zhu, X., and
Cherry, C. (2016). Semeval-2016 task 6: Detecting stance in tweets. Proceedings of
International Workshop on Semantic Evaluation, Semeval-2016, pages 31–41.

[Mohammad et al., 2017] Mohammad, S. M., Sobhani, P., and Kiritchenko, S. (2017).
Stance and sentiment in tweets. ACM Transactions on Internet Technology (TOIT),
17(3):26.

[Mohtarami et al., 2018] Mohtarami, M., Baly, R., Glass, J., Nakov, P., Màrquez, L., and
Moschitti, A. (2018). Automatic stance detection using end-to-end memory networks.
arXiv preprint arXiv:1804.07581.

[Mosteller and Tukey, 1968] Mosteller, F. and Tukey, J. W. (1968). Data analysis, includ-
ing statistics. Handbook of social psychology, 2:80–203.

[Murtagh, 1991] Murtagh, F. (1991). Multilayer perceptrons for classification and regres-
sion. Neurocomputing, 2(5-6):183–197.

[Murthy, 2018] Murthy, D. (2018). Twitter. Polity Press Cambridge, UK.

63

https://repository.upenn.edu/cgi/viewcontent.cgi?article=1162&context=cis_papers
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1162&context=cis_papers
https://medium.com/@williamkoehrsen/random-forest-simple-explanation-377895a60d2d
https://medium.com/@williamkoehrsen/random-forest-simple-explanation-377895a60d2d
https://miro.medium.com/max/241/1*9JlC4KdtYg4_pJ9TI1QKBw.png
https://miro.medium.com/max/241/1*9JlC4KdtYg4_pJ9TI1QKBw.png

[Nabil et al., 2015] Nabil, M., Aly, M., and Atiya, A. (2015). Astd: Arabic sentiment
tweets dataset. In Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, pages 2515–2519.

[Ng and Jordan, 2002] Ng, A. Y. and Jordan, M. I. (2002). On discriminative vs. gener-
ative classifiers: A comparison of logistic regression and naive bayes. In Advances in
neural information processing systems, pages 841–848.

[Opitz and Maclin, 1999] Opitz, D. and Maclin, R. (1999). Popular ensemble methods:
An empirical study. Journal of artificial intelligence research, 11:169–198.

[Pak and Paroubek, 2010] Pak, A. and Paroubek, P. (2010). Twitter as a corpus for sen-
timent analysis and opinion mining. In Language Resources and Evaluation Conference
(LREC), volume 10, pages 1320–1326.

[Parikh et al., 2016] Parikh, A. P., Täckström, O., Das, D., and Uszkoreit, J. (2016).
A decomposable attention model for natural language inference. arXiv preprint
arXiv:1606.01933.

[Passerini, 2019] Passerini, A. (2019). Support-vector machines. http://disi.unitn.it/
~passerini/teaching/2017-2018/MachineLearning/slides/15_svm/talk.pdf.

[Pedregosa et al., 2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-
learn: Machine learning in python. Journal of machine learning research, 12(Oct):2825–
2830.

[Pennacchiotti and Popescu, 2011] Pennacchiotti, M. and Popescu, A.-M. (2011).
Democrats, republicans and starbucks afficionados: user classification in twitter. In
Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 430–438. ACM.

[Pontiki et al., 2014] Pontiki, M., Galanis, D., Pavlopoulos, J., Papageorgiou, H., An-
droutsopoulos, I., and Manandhar, S. (2014). SemEval-2014 task 4: Aspect based
sentiment analysis. In Proceedings of the 8th International Workshop on Semantic Eval-
uation (SemEval 2014), pages 27–35, Dublin, Ireland. Association for Computational
Linguistics.

[Refaee and Rieser, 2014] Refaee, E. and Rieser, V. (2014). An arabic twitter corpus for
subjectivity and sentiment analysis. In Language Resources and Evaluation Conference
(LREC), pages 2268–2273.

[Riedel et al., 2017] Riedel, B., Augenstein, I., Spithourakis, G. P., and Riedel, S. (2017).
A simple but tough-to-beat baseline for the fake news challenge stance detection task.
arXiv preprint arXiv:1707.03264.

[Russell and Norvig, 2009] Russell, S. and Norvig, P. (2009). Artificial Intelligence: A
Modern Approach. Prentice Hall Press, USA, 3rd edition.

[Salameh, 2019] Salameh, M. T. B. (2019). Migration from the arab spring countries to eu-
rope: Causes and consequences. In Smart Technologies and Innovation for a Sustainable
Future, pages 243–254. Springer.

[Sidorov et al., 2012] Sidorov, G., Miranda-Jiménez, S., Viveros-Jiménez, F., Gelbukh, A.,
Castro-Sánchez, N., Velásquez, F., Díaz-Rangel, I., Suárez-Guerra, S., Trevino, A., and
Gordon, J. (2012). Empirical study of machine learning based approach for opinion

64

http://disi.unitn.it/~passerini/teaching/2017-2018/MachineLearning/slides/15_svm/talk.pdf
http://disi.unitn.it/~passerini/teaching/2017-2018/MachineLearning/slides/15_svm/talk.pdf

mining in tweets. In Mexican international conference on Artificial intelligence, pages
1–14. Springer.

[Soliman et al., 2014] Soliman, T. H., Elmasry, M., Hedar, A., and Doss, M. (2014). Senti-
ment analysis of arabic slang comments on facebook. International Journal of Computers
& Technology, 12(5):3470–3478.

[Stieglitz and Dang-Xuan, 2013] Stieglitz, S. and Dang-Xuan, L. (2013). Social media and
political communication: a social media analytics framework. Social network analysis
and mining, 3(4):1277–1291.

[Sukhbaatar et al., 2015] Sukhbaatar, S., Szlam, A., Weston, J., and Fergus, R. (2015).
End-to-end memory networks. In Proceedings of the 28th International Conference on
Neural Information Processing Systems - Volume 2, NIPS’15, page 2440–2448, Cam-
bridge, MA, USA. MIT Press.

[Touati et al., 2017] Touati, I., Graja, M., Ellouze, M., and Belguith, L. H. (2017). Crf-
based arabic opinion summarization system. In LPKM.

[Twitter, 2020] Twitter (2020). Rate limiting - twitter. https://developer.twitter.
com/en/docs/basics/rate-limiting.

[Webb, 2010] Webb, G. I. (2010). Naïve Bayes, pages 713–714. Springer US, Boston, MA.

[Wikipedia, 2007] Wikipedia, t. f. e. (2007). K-nearest neighbors. https://it.wikipedia.
org/wiki/K-nearest_neighbors#/media/File:KnnClassification.svg.

[Wikipedia, 2019] Wikipedia, t. f. e. (2019). K-fold cross-validation. https:
//en.wikipedia.org/wiki/Cross-validation_(statistics)#/media/File:K-
fold_cross_validation_EN.svg.

[Wong et al., 2013] Wong, F. M. F., Tan, C.-W., Sen, S., and Chiang, M. (2013). Quanti-
fying political leaning from tweets and retweets in proceedings of the 7th international
conference on weblogs and social media.

65

https://developer.twitter.com/en/docs/basics/rate-limiting
https://developer.twitter.com/en/docs/basics/rate-limiting
https://it.wikipedia.org/wiki/K-nearest_neighbors#/media/File:KnnClassification.svg
https://it.wikipedia.org/wiki/K-nearest_neighbors#/media/File:KnnClassification.svg
https://en.wikipedia.org/wiki/Cross-validation_(statistics)#/media/File:K-fold_cross_validation_EN.svg
https://en.wikipedia.org/wiki/Cross-validation_(statistics)#/media/File:K-fold_cross_validation_EN.svg
https://en.wikipedia.org/wiki/Cross-validation_(statistics)#/media/File:K-fold_cross_validation_EN.svg

	Introduction
	Literature Review
	Corpus Collection and Dataset Creation
	Social Networking Platform Selection
	Keyword Selection
	Tweet Crawling
	Pre-filtering
	Peri-filtering
	Post-selection of our Filtering Strategy

	Dataset Creation
	Variable Selection Rationale

	Dataset Annotation
	Annotation Guidelines
	Cohen's Kappa Coefficient Calculation

	Machine Learning Approaches for Tweet Classification
	Support-Vector Machines
	Preliminary Phase with Tweet Pre-processing
	K-Fold Cross-Validation
	Hyperparameter Tuning using Grid Search Cross-Validation
	Further Tweet Pre-processing
	K-Fold Cross-Validation
	Hyperparameter Tuning using Grid Search Cross-Validation
	Splitting Hashtags
	K-Fold Cross-Validation
	Hyperparameter Tuning using Grid Search Cross-Validation
	K-Fold Cross-Validation with 2 Classes: 0 and 1
	Hyperparameter Tuning using Grid Search Cross-Validation with 2 Classes: 0 and 1
	The 2 Classifiers Approach
	K-Fold Cross-Validation
	Hyperparameter Tuning using Grid Search Cross-Validation

	Naïve Bayes
	K-Nearest Neighbors
	K-Fold Cross Validation
	Hyperparameter Tuning using Grid Search Cross-Validation

	Random Forests
	K-Fold Cross-Validation
	Hyperparameter Tuning using Grid Search Cross-Validation

	Logistic Regression
	K-Fold Cross-Validation
	Hyperparameter Tuning using Grid Search Cross-Validation

	Voting Classifier
	Hard Voting
	Soft Voting

	Results and Error Analysis
	Results
	Error Analysis

	Conclusion and Further Research
	Bibliography

