
UNIVERSIDADE DO MINHO

Anti-Ego: Tackling Byzantine fault

models using accountability

by

Mohamad Baalbaki

A research report submitted in partial fulfillment of the requirements for the

degree of Bachelor of Computer Science

in the

Faculty of Engineering

Department of Informatics

September 2017

University Web Site URL Here (include http://)
baalbakim21@gmail.com
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://www.uminho.pt/)


UNIVERSIDADE DO MINHO

Abstract

Faculty of Engineering

Department of Informatics

Bachelor of Computer Science

by Mohamad Baalbaki

In this paper we present our protocol Anti-Ego for social mobile networks with rational behaviors.

We assume that all the nodes are selfish. Anti-Ego shows that accountability can be an alternative

solution through instant misbehavior detection. Parasite nodes are eventually detected and

blacklisted. The accountability is done using a secure log with reduced resource requirements

and complexity. The secure log is used to automatically detect if a node discarded a message,

as in not forwarding it, thus exposing faulty nodes. Our protocol is applicable if the following

requirements apply: nodes can sign messages, and that each node is periodically checked by a

correct node. We demonstrate that Anti-Ego is practical by running it on a MAC machine using

multi-processes and three Samsung Galaxy Tab 10.1.

Keywords: Social mobile networks, rational behaviors, selfish, accountability, secure log, black-

list.

University Web Site URL Here (include http://)
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://www.uminho.pt/)
baalbakim21@gmail.com


Chapter 1

Introduction

Nowadays, cooperative systems[1] are widespread. Examples of cooperative systems are mo-

bile phones, robots, aircraft in search-and-rescue operations, military surveillance devices and

software agents. With the advancement of cooperative systems, it becomes apparent that mes-

sage forwarding is a fundamental approach in this field because nodes should have incentive to

forward messages between each other. Unfortunately, some nodes may have selfish behaviors

because their resources are scarce, so they drop the messages to save resources. There are nu-

merous approaches[2–5] that have been used so far to try to fix this problem, but failed to do so

and most of them introduced new overheads.

For instance, the credit-based solution [2] proposes that nodes pay and get paid for providing

services to others. The problem is that it must be enforced, otherwise nodes may start discarding

the messages. In addition to that, it is not compatible with social mobile networks.

The reputation based approach [3] assigns nodes a metric that classifies them as good nodes or

parasite nodes. In some cases, nodes might deceive the network by teaming up with each other

nodes and modifying their reputation metric. This diminishes the credibility of the results of

this protocol. Moreover, it is also not designed for social mobile networks like the credit based

approach.

In addition to the approaches cited above, Game Theory techniques [6] have been used by

Alessandro Mei and Julinda Stefa in Give2Get [4]. G2G epidemic forwarding and delegation

forwarding were created because both epidemic[7] and delegation forwarding[8] do not handle

selfish nodes. The problem with these protocols is that they cannot be implemented in Delay

Tolerant Networks (DTN)[9]. They can only be implemented in closed area indoor networks

which limits their use.

Means of accountability can be an alternative solution through instant misbehavior detection.

That’s what PeerReview[5] tried to do. But in a system with a many nodes, it can be difficult to

ensure an absolute bound on the number of faulty nodes. In addition to that, it does not work

on mobile networks and when the node has very limited resources.
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This led us to develop the Anti-Ego protocol, an accountable system for Mobile systems against

rational nodes. It supports anonymous messaging with accountability using secure logs with

reduced resources requirements and complexity.

In this paper, we will explain our protocol and show our experimentation results, highlighting

the different phases of it.

1.1 Contributions

We summarize our contribution in the following three points:

1.1.1 State-of-the-art

We made a thorough literature review for messaging protocols that address the message forward-

ing problem in rational and non-rational networks. It was crucial to show the existing gaps of

current protocols to make use of some techniques that can help us design a better protocol.

We addressed state-of-the-art considering these points:

• Nodes may discard the messages to save resources, which will eventually ruin the message

passing process.

• Some of the protocols try to solve this problem in rational environments and others in

rational environments.

1.1.2 Anti-Ego made simple

Our second contribution was to make the Anti-Ego protocol easier to understand. Indeed,

Anti-Ego inherits the complexity of rational behaviours from the game theory and byzantine

standpoint. We tried to make the protocol easy to understand by:

• Simplifying the secure log description.

• Not mentioning timers in the algorithm, although communication between nodes is bounded

by timers.

1.1.3 Documentation

Our third contribution was to provide a documentation for Anti-Ego’s code; our purpose is to

make the code easy to set up, configure, and understand, and thus help those who are interested

in using or improving the protocol in the future. The code being written in Java, we tried to

annotate the code and generate a Javadoc documentation following the standards and common

practices. We also used this documentation to describe the workflow of the protocols by referring
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to some key classes and methods. We also provided a simple tutorial for installing and configuring

the code.

1.2 Research report organization

The rest of the research report is organized as follows:

In Chapter 2, we start by talking about the state-of-the-art of message forwarding. Then, we

mention and explain the Epidemic Routing protocol and we define fault models and explain

their relation to our topic. All while showing the need for a new protocol that is accountable to

Byzantine and rational behaviors. After that, we talk about the numerous approaches that try

to tackle the message forwarding problem in a rational environment.

We start off Chapter 3 with the motivation of our protocol. Then, we introduce our system

model by illustrating the secure log figure. In addition to that, we give a detailed description of

the composition of the secure log. We define it as a concatenation of Verified Secure Logs VSL

and a single Unverified Secure Log USL. Our protocol conveys 2 phases: Communication phase

and Validation phase. We give a thorough and step by step description of each of these phases

with figures. At the end of this chapter, we conclude.

Chapter 4 explains how to configure the host files and how to install the dependencies to run the

code. After that, we enumerate the classes and we talk about each class. We give a description

of the class role and we show the functions behaviors through the Javadoc (Java documentation)

snippets that contain the method description, parameters, exceptions thrown and return value.

The formulas are thoroughly explained with many examples are presented. The chapter explores

the three system modes: Static, Dynamic, and Heuristic. Then, we evaluate these modes, and

we present a method to discover when switching is worthy.

Chapter 5 is the concluding chapter. In it, we conclude everything and we open a new scope of

discussion for future work.



Chapter 2

State-of-the-art

2.1 Background

Message passing in peer-to-peer networks [10] and more precisely in mobile ad hoc networks

[11] is important because information exchange is very crucial in networks. A lot of protocols

assume a connected path from source to destination. But unfortunately, in some scenarios there

might not be a connected path between them, which will make it much harder to find a way to

deliver messages between nodes. There are a lot of approaches that have been proposed such

as Epidemic Routing [7], Credit based solution [4, 12–14], Reputation based solution [3, 15]

and Give2Get [4]. We will first start by talking about Epidemic Routing, which doesn’t handle

rational behaviors [16, 17], unlike the other routing protocols. We chose to talk about Epidemic

Routing because it solves the message passing problem in a non-rational network. As stated

before, message passing is really helpful because information exchange is crucial in networks.

But it may present some challenges when there are nodes in the network with selfish behaviors.

These nodes may discard the messages to save resources, which will eventually ruin the message

passing process.

2.2 Epidemic Routing Protocol

An approach that tackles this problem in a non-rational environment is Epidemic Routing. It is

essentially flooding in a partially connected ad hoc network. The latter is a network that does

not rely on a specific infrastructure. In Epidemic Routing, nodes continuously replicate and

transmit messages to newly encountered contacts that do not already have a copy of the sent

message. The current ad hoc routing protocols are not compatible with partially connected ad

hoc networks, because as mentioned before, they need the presence of a connected path from

source to destination. Here came the use of Epidemic Routing, where there might not be a

connected path between source and destination.

The goals of Epidemic Routing are to:
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• Maximize message delivery rate.

• Minimize message latency.

• Minimize the total resources consumed in message delivery.

• Deliver messages from source to destination with high probability even when there is never

a connected path between them.

We assume that the sender is not in range and not near other nodes. In addition to that, we

assume that he/she doesn’t know where the receiver is currently located or the best route to

follow.

The Epidemic Routing approach aims to distribute application messages to nodes within con-

nected portions of ad hoc networks. In this way, messages are quickly distributed through con-

nected portions of the network. It then relies upon nodes coming into proximity with another

connected portion of the network and at this point, the message spreads to an additional island of

nodes like a contagious disease. This leads to have a high probability of messages reaching their

destination. Epidemic Routing supports the eventual delivery of messages to their destinations

without knowledge of the network topology. It only needs pair-wise connectivity to guarantee

the transitive distribution of messages through ad hoc networks.

The Epidemic Routing protocol works as follows. Each host in the ad hoc network has a buffer

that contains the messages it has created and the messages it is carrying for other hosts. A hash

table indexes these messages and assigns a unique identifier to each one. Each host has its own

summary vector, which is a set of all messages treated by a certain host.

1. When two hosts come into communication range of one another, the host with the smaller

identifier (let us call it A) initiates a session with the host with the larger identifier (let

us call it B). To avoid redundant connections, each host maintains a cache of hosts that it

has spoken with recently.

2. A starts by sending its summary vector SVA, to B. As stated before, the summary vector

of A is the set of all the messages A has treated.

3. B then performs a logical AND operation between SVA and the complement of SVB, which

we will denote by SV—B. To be more clear, it is the set of messages B has not treated.

The AND operation gives us the intersection between SVA and SV—B, which in turn is

the set of messages that B needs.

2.2.1 Example

Consider the set of all messages that have been sent in the network: {u, v, wp, r, x, y, z}
SVA (The set of messages A has treated): {u, v, w}
SVB (The set of messages B has treated): {p, u, r}
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SV—B (The set of messages B hasn’t treated): {v, w, p, x, y, z}
SVA AND SV—B (The intersection between the messages A has treated and the messages B

hasn’t treated): {v, w}
So v and w are the messages that A has treated and B has not yet treated, therefore B needs

them.

Finally, A transmits the requested messages to B. This process is repeated transitively when

B encounters a new neighbor. Given sufficient buffer space and time, these sessions guarantee

eventual message delivery.

Figure 2.1: This figure shows the message passing from A to B in Epidemic Routing. As
mentioned before, node A sends its summary vector ”SVA” to node B, which is the set of all
the messages A has treated. Then B performs a logical AND operation between SVA and the

complement of ”SVB” denoted by ”SV—B”. Then A sends the messages unknown to B.

2.3 Fault Models

In cooperative systems, that is, in the environment that Epidemic Routing operates in, rational/-

selfish behavior may be present. This kind of behavior occurs when peers have scarce resources,

and so they discard messages to save their resources. This falls under the umbrella of fault

models, which are classes of something that could go wrong in the operation of a piece of equip-

ment, or in our case, a message forwarding protocol such as Epidemic Routing. The Epidemic

Routing protocol has no fault models. It is assumed to be fault-tolerant. An example of a fault

model is the Byzantine fault model [18], which is an incorrect operation/algorithm that occurs

in a distributed system. Another example of fault models is the fail-stop fault model [19]. In

this type of failure, only crash failures are exhibited, but at the same time, we can assume that

any correct entity can detect a failure. The Epidemic Routing protocol does not handle both of

these fault models because it does not contain selfish nodes. Therefore, the nodes will always

respond to requests and will always send correct data. It is important to focus on rational be-

haviors because they determine what happens in the message passing procedure. The following

approaches: Credit-based, Reputation-based try to address the problem in literature.
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2.4 Approaches

While the Epidemic Routing protocol [7] assumes no rational behaviors exist, several approaches

have been introduced in literature to tackle this problem. Among the well known approaches

are Credit based, Reputation based, and Game Theory based solutions, where we assume that

all nodes have rational behaviors. Some of them partially solve this problem, and others solve it

but with some overheads. We view these approaches in the following sections, focusing on the

main pros and cons in each of them.

2.4.1 Credit-Based Approach

A credit-based solution [2] proposes that nodes pay and get paid for providing services to others.

Since rational behaviors are present in this approach, a digital cash system is implemented in

order to encourage correct behavior among them. This digital cash system stimulates a co-

operative behavior between nodes and gives them an incentive to forward messages because it

would benefit them. The main idea is that nodes that use a service should be charged and nodes

that provide a service should get paid. Let us assume that the digital cash system currency is

”coins”.

Now, if Node A wants to use a service (e.g., it wants to send a message), then it has to pay for

it in coins. This motivates each node to increase its number of coins, because these coins are

indispensable for using the network. Thus, the probability of nodes discarding messages would

be really slim because it would be against their interests to decrease their coins. It is better off

providing services to other nodes because this is the only way to earn coins. The problem with

this approach is that it must be enforced somehow, otherwise nodes may misbehave. To avoid

forgery and to enforce protection, methods of cryptography should be applied. A secret key is

needed to produce the coins. In addition to that, this way discourages parasites from collecting

payments for each other. Regardless of its performance in ad hoc networks, it is not designed for

social mobile networks. Social mobile networks have received much attention in recent years due

to their potential applications and the proliferation of mobile devices, which increases the need

of a functional message passing protocol. Unfortunately, it is not the case in the Credit-based

approach.

2.4.2 Reputation-Based Approach

In this approach [3], nodes are assigned a metric that classifies them in the network as good or

bad ones. If it is determined that nodes are helpful, then they should be kept in the network. On

the other hand, if it shows that the nodes are parasites, they will be annihilated. The metric used

in this solution is the reputation. Nodes gain a reputation based on if they discard a message

or keep it to forward it. They collectively detect misbehaving members and propagate declara-

tion of misbehavior throughout the network. Eventually this propagation leads to other nodes

avoiding routes through selfish members. If Node B has the obligation to forward a message and

it refuses to cooperate, then its reputation will be decreased. This leads to its exclusion if the
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non-cooperative behavior persists. Other nodes will not forward messages to it as it is a parasite

node and it is ”blacklisted”. The problem with this approach is that sometimes nodes might

cheat by co-operating with other nodes and changing their reputation metric.

For example if Node A doesn’t want to forward a message, it tells Node B to change it’s repu-

tation metric to 0, so that no one asks it to forward messages again.

In addition to that, it is not designed for social mobile networks like its counterpart. As men-

tioned before, it is important to design a message passing protocol for social mobile networks

because there’s a proliferation of mobile devices. This increases the need of a functional message

passing protocol.

2.4.3 Game Theory Approach

Another possibility to address rational behaviours in message forwarding is to use Game Theory

techniques [6] and mainly build a Nash Equilibrium [20], like the work done by Alessandro Mei

and Julinda Stefa in Give2Get [4]. The message forwarding problem can be tackled by using a

Game Theory based solution and therefore to achieve a Nash Equilibrium, because this motivates

nodes to forward messages as it won’t be beneficial for them if they don’t.

2.4.3.1 Nash Equilibrium

First of all, let us define what a Nash Equilibrium is. A Nash Equilibrium is a set of strategies,

one for each player, such that no player has incentive to change his or her strategy given what

the other players are doing.

Example on Nash Equilibrium. Let us take the example of the Spotlight game.

• Suppose two cars are driving at each other from perpendicular directions.

• The spotlight is red for one of them and green for the other.

If the police could not ticket the drivers, would they want to break the law?

• 1 means to go.

• 0 means to stop.

• -1 means to stop but while holding up the queue.

• -5 means to crash.

Both drivers can choose to go or to stop. Figure 2.2 shows the outcome of their decisions.

Case 1: If they both go. This will yield the outcome (-5,-5), which means that they will

both crash into each other. This is the worst possible outcome. It is not Nash Equilibria because

if one of them changes his/her strategy, a better outcome will be yielded.
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Figure 2.2: This figure shows the different strategies that both players might take and their
results.

Case 2: If they both stop. This will yield the outcome (-1,-1), which means that they will

both stop and wait for each other to go. They will cause traffic, so this is a bad outcome. It is

not Nash Equilibria because if one of them changes his/her strategy, a better outcome will be

yielded.

Case 3: If one goes and the other stops. This will yield the outcome (1,0) or (0,1). The

person who goes gets to his/her destination on time which is great. But the other person has to

wait which is not so good but at least he/she will have the chance to go directly after the person

who drove away, which is not so bad. If Player 2 is stopping and Player 1 is going, the latter

wouldn’t want to stop to not make a traffic mess (-1,-1). And Player 2 wouldn’t want to go to

not force an accident (-5,-5). So this clearly shows no one has an incentive to change his/her

strategy, therefore it is Nash Equilibria.

The Give2Get protocol mentioned before achieves Nash Equilibrium and therefore is an effective

game theory solution to the message forwarding problem. It assumes that all nodes behave in a

rational manner. In the following, we will discuss its two protocols: G2G Epidemic Forwarding

and G2G Delegation Forwarding.

2.4.4 Give2Get

As credit and reputation based solutions are not designed for social mobile networks, we chose

to mention Give2Get [4] because it solves the problem in a rational environment. Below are the

two protocols in Give2Get that solve the message forwarding problem in partially connected ad

hoc networks, assuming that all nodes have rational behaviors and that the nodes are not in a

delay tolerant network (DTN) [9].

2.4.4.1 G2G Epidemic Forwarding

In Epidemic Forwarding [7], the overhead of the number of messages being sent is very high,

because every contact is used as an opportunity to forward messages. And as we know, Epidemic
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Forwarding does not tolerate a situation where every node in the network is a selfish one.

A

B

1 5432

Figure 2.3: This figure shows the relay between node A and node B.

Here came the use of G2G Epidemic Forwarding, which is a protocol that works in a system

where all nodes are considered selfish. It consists of three phases:

1. Message generation: If node A has a message to send to node D. The message is generated

with a key called PKD which is the public key of the destination D. It is made on purpose

to hide the sender of the message to all nodes/relays in the network so that no relay has

an interest to drop the message.

2. Message relay: After the message is generated, A will relay it to the first nodes it encoun-

ters. Assume that node A meets node B. After starting an encrypted session together,

Node A asks node B if it has already handled a message with hash H(m) (Phase a). If

node B says yes, it tells A that it should not be chosen as a relay (Phase b). Otherwise, if

Node B has never seen the message, Node A generates a random key k, and sends message

m to B, encrypted with key k (Phase c). Then, node B sends a proof of relay to node A

(Phase d) which in turn sends key k to B, who now knows whether it is the destination of

the message or just a relay (Phase e).

3. Message test: Node B will follow the same protocol as done by node A. Then by the time

it has collected two proofs of relay, it will be asked while re-meeting node A again if it

is able to show the two proofs or to prove to have still the message in its memory. If it

cannot, then node A will broadcast a proof of misbehavior (PoM) to the whole network

that will blacklist node.

2.4.4.2 G2G Delegation Forwarding

On the other hand, in Delegation Forwarding [8], if node A meets node B, node A checks whether

the forwarding quality of B is higher than the forwarding quality of the message. If yes, then

it will create a copy of the message and assign both messages with the forwarding quality of

node B, and then then it will forward one of the two copies to B. Otherwise, the message

is not forwarded. As Epidemic Forwarding, Delegation Forwarding does not handle rational

behaviours. Thus came the creation of G2G Delegation Forwarding, where the application of

Nash Equilibrium solves this problem.
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2.4.5 PeerReview

PeerReview[5] is a system that provides accountability in distributed systems. We chose to talk

about PeerReview because it solves Byzantine fault models but it is not capable of solving fault

models of networks with rational behaviors which is a plus for us. It is a system that ensures

that Byzantine faults whose effects are observed by a correct node are eventually detected and

classified as a faulty node. At the same time, it ensures that a correct node can always defend

itself against false accusations (false accusations are when a node with correct behavior is accused

of being faulty). This is important because in cooperative system, nodes may not trust each

other and they can fail for many reasons:

• A node can suffer from a hardware or software failure.

• An attacker can compromise a node.

• Nodes may be accidentally misconfigured or may be compromised as a result of unpatched

security vulnerabilities.

In cooperative systems, the lack of central administration tends to aggravate these problems.

Here came the use of accountability with PeerReview to detect and expose node faults. Peer-

Review works by maintaining a secure record of the messages sent and received by each node.

The record is used to automatically detect when a nodes behavior deviates from that of a given

reference implementation, thus exposing faulty nodes. To be more elaborate, PeerReview creates

a per-node secure log, which records the messages a node has sent and received, and the inputs

and outputs of the application. Any node i can request the log of another node j and indepen-

dently determine whether j has deviated from its expected behavior. To do this, i replays js log

using a reference implementation that defines js expected behavior. By comparing the results of

the replayed execution with those recorded in the log, PeerReview can detect Byzantine faults

without requiring a formal specification of the system. Unfortunately, in a system with a large

number of nodes, it can be difficult to ensure an absolute bound on the number of faulty nodes.

To maintain PeerReviews completeness guarantees, a precise number of witnesses mentioned in

[5] must be chosen; otherwise, all witnesses of a faulty node could also be faulty. In addition to

that, it does not work on mobile networks which limits its use nowadays. As mentioned in the

PeerReview paper, to avoid problems in finding faulty nodes and to get more accurate results,

more CPUs or a CPU with multiple cores should be used. This is a bit too demanding. In

addition to that, it does not work when the node has very limited resources as mentioned in the

PeerReview paper [5]. This means that the PeerReview protocol is very restricted to work with.

2.4.6 CATS

CATS[21] is a network storage service with strong accountability properties. It enables nodes

to read and write a shared directory of objects maintained by a CATS server. It provides them

with the means to verify that the server is executing everything correctly. Nodes cannot deny

their operations on a strongly accountable server.
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Like PeerReview[5], CATS maintains secure logs that record the messages sent and received by

each node. However, it depends on a trusted publishing medium that ensures the integrity of

these logs. CATS detects faults by checking logs against a set of rules that describes the correct

behavior of a specific system (a network storage service).

Yan Zhu and his colleagues said in their paper[22]: ”The traditional cryptographic technologies

for data integrity and availability, based on hash functions and signature schemes, cannot work

on the outsourced data without a local copy of data. In addition, it is not a practical solution

for data validation by downloading them due to the expensive communications, especially for

largesize files. Moreover, the ability to audit the correctness of the data in a cloud environment

can be formidable and expensive for the cloud users.” What’s stated above clearly shows that it

is unpractical to use CATS.

2.4.7 Repeat and Compare

Repeat and Compare[23] is a system for ensuring content integrity in untrusted peer-to-peer con-

tent delivery networks[24]. Repeat and Compare uses accountability to ensure content integrity

in a peer-to-peer CDN built on untrusted nodes.

First, it observes responses sent to clients, even though clients may lie.

Second, it needs to repeat response generation, even though origin servers may supply multiple,

conflicting copies of the content.

Third, it needs to isolate misbehaving nodes, even though the nodes that ”repeat and compare”

are not trusted.

It detects faults by having a set of trusted verifier nodes locally reproduce a random sample of

the generated content, and by comparing the results to the content returned by the untrusted

nodes.

As Haeberlen said in his paper[25]: ”However, existing accountability techniques fall short of the

requirements for cloud computing in several ways. Since clouds are general-purpose platforms,

the provider should be able to offer accountability for any service his customers may choose to

run on it; this rules out application-specific techniques like CATS[23] or Repeat and Compare[23].

The application-independent technique in PeerReview[5], on the other hand, requires software

modifications and assumes that the behavior of the software is deterministic, neither of which

seems realistic in a cloud computing scenario. Finally, even if these limitations are overcome,

the above techniques can only detect violations of a single property (correctness of execution);

they were not designed to check other properties of interest in the cloud, such as conformance

to SLAs, protection of confidential data, data durability, service availability, and so on.” This

clearly shows that Repeat and Compare and the other accountability protocols fail to serve our

purpose which led us to develop a protocol called Anti-Ego. It will be explained in the following

chapter.
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2.5 Conclusion

In this chapter, we have discussed state-of-the-art of message forwarding under rational and

Byzantine behaviours. We’ve addressed 3 categories of protocols:

The first protocol, Epidemic Routing protocol, only works in non-rational environments.

The next approaches are the Credit Based approach and the Reputation Based approach. They

are not designed for social mobile networks which makes them unpractical.

Third of all, both Give2Get Epidemic Forwarding and Give2Get Delegation Forwarding have

the problem of only working in closed area indoor networks which limits their use.

PeerReview, CATS and Repeat and Compare follow. They do not work when the node has very

limited resources.

The rest of this research report describes our solution.



Chapter 3

Anti-Ego: Tackling Byzantine

fault models using accountability

3.1 Motivation

The following chapter talks about our approach to solve the message forwarding problem. It

is called ”Anti-Ego”. As it is stated previously, existing approaches such as credit[4, 12–14]

and reputation based solutions[3, 15] that try to solve the message passing problem in ad hoc

networks where selfish behaviors exist, do not do the job. By this we mean that both the credit

based approach [2] and the reputation based approach [15] are not designed for social mobile

networks. It is crucial for it to work on social mobile networks because by embracing modern

technology, sharing data becomes much easier. Furthermore, the Give2Get[4] protocol solves

this problem but only in closed area indoor networks. It is important to solve this problem on

a higher scale such as the Delay Tolerant Networks (DTN) [9] one. This is due to the fact that

this way, messages can be sent and received from really long distances. Our protocol rises to

this level. Below are some of the reasons that motivated our work:

• Accountability can be an alternative solution through instant misbehavior detection.

• PeerReview [5] is not applicable for Mobile networks because of sync assumptions, limited

resources and complexity.

• Our protocol handles anonymous messaging.

• The accountability is done using secure logs with reduced resource requirements and com-

plexity.

• The implementation and experimentation are concrete. Below is the protocol with its

phases which will be explained in the next paragraph.

14
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3.2 Protocol

The protocol is composed of two phases: Validation and Communication. Validation phase is

used to test if nodes are trustworthy. If a node is trusted, the Communication phase can be

launched. Below is the system model along with some of the notations that are used.

3.2.1 System Model

The system is composed of multiple nodes that can interact over a wireless intermittent connec-

tion in a mobile network. Nodes are assumed to have limited resources like processing power,

battery power, and storage. In addition to that, we assume that each node can be selfish (trying

to save its resources) but neither malicious nor it can collude. To enforce accountability against

selfish nodes, we provide a solution inspired from [26] and [5]. We require that each node has

a secure log SL to store its executed operations in a way that allows other nodes to verify log

correctness and consistency.

VSL
1

...VSL
2

VSL
3 e

k
=(s

k
,t

k
,o

k
)

USL
Secure Log (SL)

Figure 3.1: This figure shows the secure log.

A secure log SL is an append-only list of records appended in a chronological order; it is com-

posed of a concatenation of Verified Secure Logs VSL and a single Unverified Secure Log USL,

i.e., SL = V SL1||...||V SLi||USL. V SLi is a sequence of hash values of the executed operations

by the node itself, and appended with a verification certificate from another node. A certificate

is a signed hash value of the verified log (hash of the hash values). USL is a sequence of hash

values of operations executed by the node without being verified yet. In USL, each hash value is

associated with an entry ek = (sk, tk, ok) with a sequence number sk , an operation type tk , and

an operation ok. The sequence numbers must be strictly increasing. A hash value hk is recur-

sively computed from hk−1 and ek as follows: hk = H(hk−1||sk||tk||H(ok)). An authenticator

αX
k = σX(sk, hk) is a signed statement by node X (using its private key) that its log entry eXk

has hash value hXk . In addition, each node keeps a Validation Authenticator hash Table VHT

which is used to store the VSLs of the other nodes that were exchanged during validation. For

any three nodes X, Y , and Z, we assume that SLX = V SLY ||V SLZ ||USL. On a fine-grained

scale, SLX = hX1 , h
X
2 , ..., h

X
i , c

X/Y
i , hXi+1, ..., h

X
v , c

X/Z
v , hXv+1, ..., h

X
j , .., h

X
n ; where hXi represents

the ith hash value of X, and c
X/Y
v represents the verification certificate of X’s log from hXi to hXv

delivered by Y. We denote by h
X/Y
k the hash value of an entry eXk of X computed by node Y.

3.2.2 Communication Phase

Assume that the last entry of X’s and Y’s USL are hXn and hYm, respectively.

1. X encrypts Anonym message to hide its final destination, adds it to its log,

and sends it to Y (Phase a).
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1-ANONYM

X

Y

2-ASK 4-DECRYPT3-KEY

Figure 3.2: This figure shows the communication phase between node X and node Y.

Additional details. X prepares an Anonym message by encrypting the message pay-

load m and the message destination Dm in the message content on+1 = Anonym(σX(<

m,Dm >)) using the private key of X and a randomly generated key K). Then, X creates a

hash value hXn+1 for a corresponding entry eXn+1 = (sn+1, SEND, on+1) and appends them

to USL. Then, X creates two authenticators aXn and aXn+1 corresponding to hXn and hXn+1,

respectively. After that, X sends the last entry eXn+1 along with the two authenticators aXn

and aXn+1 to Y.

2. Y receives Anonym from X, verifies if X added Anonym to its log, and sends

an ASK message to X asking for the key to decrypt Anonym (Phase b).

Additional details. Y receives Anonym from X and computes h
X/Y
n+1 using hXn and eXn+1

(after verifying the signatures of the corresponding authenticators). Then Y verifies if X has

added Anonym to its log by comparing h
X/Y
n+1 with hXn+1. If not, Y adds X to its blacklist.

Otherwise, Y adds Anonym content to its log in a new entry eYm+1 = (sm+1, RECV, om+1);

where om+1 = hXn+1 (to save storage resources) . Then, it prepares an ASK message

to ask for the key of the Anonym message in order to decrypt it. It puts aXn+1 in the

message content om+2 and creates a hash value hYm+2 with a corresponding entry eYm+2 =

(sm+2, ASK, om+2) and appends them to USL. Then, Y creates two authenticators aYm+1

and aYm+2 corresponding to hYm+1 and hYm+2, respectively. After that, Y sends the last

entry eYm+2 along with the two authenticators aYm+1 and aYm+2 to X.

3. X receives ASK from Y, verifies if Y has added ASK to its log, and replies

with a KEY message (Phase c).

Additional details. X receives ASK from Y and computes h
Y/X
m+2 using hYm+1 and eYm+2

(after verifying the signatures of the corresponding authenticators). Then, X verifies if Y

has added ASK to its log by comparing h
Y/X
m+2 with hYm+2. If not, X adds Y to its blacklist.

Otherwise, X adds ASK content to its log in a new entry eXn+3 = (sn+3, RECV, on+3);

where on+3 = hYm+2 (to save storage resources) . Then, it prepares a KEY message to send

the key K of the Anonym message to Y. It puts the key K in the message content on+4

and creates a hash value hXn+4 with a corresponding entry eXn+4 = (sn+4,KEY, on+4) and

appends them to USL. Then, X creates two authenticators aXn+3 and aXn+4 corresponding

to hXn+3 and hXn+4, respectively. After that, X sends the last entry eXn+4 along with the two

authenticators aXn+3 and aXn+4 to Y.

4. Y receives Key from X and decrypts Anonym. If the final destination of

Anonym is Y, this later uses the messages, otherwise, Y forwards the mes-

sages to the final destination (or another forwarder) node. If Y did not receive
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KEY, it forwards the encrypted Anonym to any N different nodes (to prevent

selfishness) (Phase d).

Additional details. Y receives the KEY message from X and computes h
X/Y
n+4 using

hXn+3 and eXn+4 (after verifying the signatures of the corresponding authenticators). Then

Y verifies if X has added KEY to its log by comparing h
X/Y
n+4 with hXn+4. If not, Y adds

X to its blacklist. Otherwise, Y adds KEY content to its log in a new entry eYm+3 =

(sm+3, RECV, om+3); where om+3 = hXn+4 (to save storage resources). Now, Y used the

key K to decrypt the Anonym message. If Y noticed that the message is destined to it, it

executes it. Otherwise, Y forwards the message to the destination (or to another bridge

node). In case Y did not receive the KEY message of Anonym (whether X has not sent

it or the message was lost), Y must keep forwarding the encrypted Anonym message until

receiving N ASK messages from different nodes; these messages stand as a proof in Y’s log

that it is not misbehaving (e.g., by dropping the KEY message from X).
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Figure 3.3: This figure shows the details of the secure log in the communication phase.

3.2.3 Validation Phase

Assume that the last entry of X’s and Y’s USL are hXn and hYm, respectively.

1-VALID

X

Y

2-VACK 4-DECRYPT3-ANONYM

Figure 3.4: This figure shows the validation phase between node X and node Y.

1. X sends a Valid message to Y with its VSL, the entries of USL, and the au-

thenticator corresponding to hXn+1 (Phase a).

Additional details. X prepares a validation message V alid; then it creates a hash value

hXn+1 for the corresponding entry eXn+1 = (sn+1, SEND, on+1), and appends them to USL.

The Valid message must be accompanied with the verified secure log VSL, the entries

eXv+1, .., e
X
n+1 (without their hash values), and the VHT table. In addition, X creates an

authenticator aXn+1 corresponding to hXn+1 and sends it along with the Valid message to

node Y.
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2. Y receives Valid message from X and verifies if X has computed its log hash

sequence correctly. The it checks if its previous hash values, if any, are present

in X’s log or VHT; this is crucial to check for log fragmentation of nodes.

Then, Y sends a VACK message to X with its VSL, the entries of USL, and

the authenticator corresponding to hYm+2 (Phase b).

Additional details. Y receives Valid from X and logs a corresponding entry eYm+1 =

(sm+1, RECV, om+1) in its USL after verifying the signature. Then, Y validates S’s log

in three steps. First, it creates all the hash values of X’s USL starting from hXv until

hXn+1 by using the entries eXv+1, .., e
X
n+1. if the calculated hash value h

X/Y
n+1 matches the

received hash value hXn+1 (obtained after decrypting aXn+1), then Y knows that X has not

tampered with its USL. Second, Y check if X is misbehaving by dropping some Anonym

messages that are supposed to be forwarded. This is done by checking whether every

RECV entry of an Anonym message in X’s USL is either followed by a SEND entry of the

same message or followed by N different RECV entries of ASK messages corresponding

to Anonym (ensuring that X used to forward Anonym messages to N nodes if it had

not received their KEYs). Third, Y verifies if the hash values in X’s VSL match the

corresponding certificates, i.e., if H(hX1 , h
X
2 , ..., h

X
i ) matches h

X/Y
i in the certificate c

X/Y
i ,

and Hash(hXi+1, ..., h
X
v ) matches h

X/Z
v in the certificate c

X/Z
v . Fourth, Y checks whether its

hash values of potential previous communication with X in present in X’s SL (in our case

Y has met X previously as shown in X’s VSL). This step ensures that X has not deleted

any previous hash values for communications with Y. Then ,Y checks whether its hash

values of potential previous communication with those nodes which validated X’s log (i.e.,

Y and Z in our case) are present in X’s VHT. If Y noticed missing hash values with some

node T, then Y adds T to it black list. This step ensures that other nodes are not using

different log version for different nodes. As soon as this validation finishes, Y drops the

entries eXv+1, .., e
X
n+1 and computes a certificate for X’s c

X/Y
n+1 which is a signed message of

the verified log hash H(hX1 , h
X
2 , ..., h

X
n+1), and adds X’s SL to its own VHT (it overrides the

old one if exists). Now, Y prepares a validation acknowledgment message VACK similar to

the Valid message in with entry eYm+2 = (sm+2, SEND, om+2) (where om+2 = aXn+1), adds

it to its USL, and sends the ASK message back to X (the details concerning the VACK

message are quite similar to step 1 above).

3. X receives VACK message from Y and verifies if Y has computed its log hash

sequence correctly. Then it checks if its previous hash values, if any, are present

in Y’s log or VHT; this is crucial to check for log fragmentation of nodes. Then,

X starts the communication phase by sending an Anonym message to Y with

a certificate of Y’s log signed by X (Phase c).

Additional details. X receives VACK from Y and adds a corresponding entry eXn+2 =

(sn+2, RECV, on+2) to its USL log. Then, X makes sure that I has correctly validated it’s

log by matching the hash values received in the VHT of Y from hXv until hXn+1; otherwise, X

adds Y to its blacklist. Then, X deletes all its entries eXv+1, .., e
X
n+1 (i.e., USL is now empty).

After that, X validates Y’s log in a similar way to step 2 above. Then, X trusts Y, and

starts the communication phase by preparing an Anonym message (see Subsection 3.2.2),

and adds the corresponding entry eXn+3 = (sn+3, SEND, om+3) it to its USL, and sends it
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along with the certificate c
Y/X
m+2, computed using VSL and USL of Y, which proves that X

has correctly validated Y’s log until the last hash value in Y’s USL hYm+2.

4. Y receives Anonym message from X and verifies if X has sent a correct certifi-

cate for Y’s log (Phase d).

Additional details. Y receives the Anonym message from X and adds a corresponding

entry eYm+3 = (sm+3, RECV, om+3) it to its USL. Then Y checks whether X has verified

correctly its log by checking if the certificate c
Y/X
m+2 sent by X matches the hash value of Y

itself. If this is true, Y trusts X and deletes all the entries in its own USL until eYm+2, and

the communication phase continues; otherwise, Y adds X to its blacklist.

3.3 Conclusion

In this chapter, we presented AntiEgo: a new message forwarding protocol for rational and

Byzantine behaviours. The basic idea of the protocol is to force all nodes to contribute in the

forwarding of messages and not to discard them.

Our design decision bridges the gaps of state-of-the-art protocols because unlike Give2Get, it

can be implemented in Delay tolerant networks.

Our protocol may not work in the case of a node refusing to send ”Anonym” since it might do

so if it is selfish and only wants to validate trying to minimize its storage by deleting log entries.

In hopes of doing sufficient testing to show accurate experimentation results in the near future.



Chapter 4

Code Specifications

4.1 Setup

In this section, we will explain thoroughly how to run the code. We chose Eclipse to write our

code because it is the leading Java IDE and it is easy to use and deal with.

4.1.1 Dependencies

• The code is tested on Java 6 on MAC OS X 10.6, Windows, and 3 Samsung Galaxy Tab

10.1, but it can also work on other machines.

• If 3rd party encryption is needed, then include the flexiprovider encryption library from

here: http://www.flexiprovider.de/ (or just remove flexiprovider imports in the Cryp-

tography class in the code).

4.1.2 Installation

1. Install eclipse and include flexiprovider libraries in the class path (if needed).

2. Import in eclipse an ”Existing Projects to Workspace” indicating the AMS folder. This

will import the project smoothly into eclipse.

3. Make sure that all class paths are ok. The code should not have any error.

4.1.3 Configuration

1. Use two computers and connect them through a LAN cable or WLAN.

2. Open the command prompt and write: ipconfig/all on both computers.

3. Write down the IPv4 addresses.

20
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4. Change the IPs of your machines in the config folder to the IPv4 addresses and assign

suitable keys for encryption.

4.1.4 Testing

The code is tested on a single MAC machine using multi-processes, on Windows and 3 Samsung

Galaxy Tab 10.1. It is trivial to run it on multiple machines too. Running the application is

straightforward, just make sure to give a reasonable time between nodes you lunch as they are

configured to immediately start sending messages (by default node1 starts).

4.2 Classes

The code is comprised of one main class which is called ”Launcher”, and 5 other classes: Node,

Cryptography, Messaging, SecureLogging and Tools. We will not talk about the Launcher class

since it doesn’t contain anything but the creation of a node, and we won’t talk about the Tools

class because it is a Utility class. In addition to that, we will mention the Cryptography class

in the SecureLogging class.

4.2.1 Node class

4.2.1.1 Class role

This class has the role of generating the operation and sequences ids, as well as filling the identity

map.

The workflow is as follows: the Launcher class evokes the creation of a new Node with a thread-

pool, so the Node class’s constructor does the job of creating it. At least 2 nodes should be

created so that the Messaging class can create the messages between them.

4.2.1.2 Functions

This class has the following methods: addChallenge, executeOperation, fillIdentityMap, gener-

ateOpId, generateSeqId, getBlacklist, getChallengeMap, getId, getInfoBase, getIPAddress, get-

PrivateKey, getPublicKey, getULog, initializeOutQueue, initializeValid, newAnonymPayload.

We will only cover the addChallenge and fillIdentityMap methods because they are the most

important ones, the others are helper methods.

1. addChallenge(SecureLogging.AccountHashEntry receivedHashEntry):
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Figure 4.1: This figure shows the documentation of the addChallenge method.

2. fillIdentityMap():

Figure 4.2: This figure shows the documentation of the fillIdentityMap method.

4.2.2 Messaging class

4.2.2.1 Class role

With the 2 nodes being ready, this class has the role of handling the messages being sent between

them. It handles all the messages depending on their types. For example, if a message is of

type ASK, it calls the method handleAsk 4.6. If it’s of type Anonym, it calls the method

handleAnonym 4.4 and so on... The nodes now await the accountability which is done in the

secure log. We will explain that in the next section.

The following javadocs explain what is done in each method.

4.2.2.2 Functions

The Messaging class has one method called ”handle” and each subclass has many methods.

We will only focus on the ”handle” method and the methods it calls since they are the most

important ones. The main parameter used is the briefCase which is the container of messages.

1. handle(Messaging.Briefcase briefCase, long operationId):

Figure 4.3: This figure shows the documentation of the handle method.

2. handleAnonym(Messaging.Briefcase bCase, long operationId):
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Figure 4.4: This figure shows the documentation of the handleAnonym method.

3. handleVanonym(Messaging.Briefcase bCase, long operationId):

Figure 4.5: This figure shows the documentation of the handleVanonym method.

4. handleAsk(Messaging.Briefcase bCase, long operationId):

Figure 4.6: This figure shows the documentation of the handleAsk method.

5. handleKey(Messaging.Briefcase bCase, long operationId):

Figure 4.7: This figure shows the documentation of the handleKey method.

6. handleValid(Messaging.Briefcase bCase, long operationId):

Figure 4.8: This figure shows the documentation of the handleValid method.
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7. handleVack(Messaging.Briefcase bCase, long operationId):

Figure 4.9: This figure shows the documentation of the handleVack method.

4.2.3 SecureLogging class

4.2.3.1 Class role

Before talking about the role of the SecureLogging class, we will mention the Cryptography class

because cryptography happens before the accountability.

The Cryptography class, as its name suggests has the role of handling the encryption and de-

cryption of the messages. It does that by generating the ECC and RSA keys and using the

cipher, messageDigest and two attributes from the ”Node” class which are the publicKey and

privateKey.

After the messages are encrypted, it is crucial to talk about the SecureLogging class which has

the role of creating and handling the secure log of the nodes, as well as containing the methods

that are responsible for the accountability. In other words, it contains all of the methods that

verify if a node sent a message or discarded it.

The secure log figure 3.3 shows how the messages are being contained.

4.2.3.2 Cryptography class functions

This class has the following methods: digestEntry, digestHashMap, digestMessage (one that takes

a String and one that takes an array of bytes), generateECCKeys, generateRSAKeys, readKeys,

encryptMessage and decryptMessage (one that takes a String and one that takes an array of bytes

for each of these two methods). We will only cover the generateECCKeys, generateRSAKeys,

encryptMessage, decryptMessage methods because they are the most important ones, some of

the others are helper methods and some are less important.

1. generateECCKeys():

Figure 4.10: This figure shows the documentation of the generateECCKeys method.
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2. generateRSAKeys():

Figure 4.11: This figure shows the documentation of the generateRSAKeys method.

3. encryptMessage(java.security.PublicKey publicKey, java.lang.String message):

Figure 4.12: This figure shows the documentation of the encryptMessage method.

4. encryptMessage(java.security.PublicKey publicKey, byte[] message):

Figure 4.13: This figure shows the documentation of the encryptMessage method.

5. decryptMessage(java.security.PrivateKey privateKey,java.lang.String message):

Figure 4.14: This figure shows the documentation of the decryptMessage method.

6. decryptMessage(java.security.PrivateKey privateKey,byte[] message):

Figure 4.15: This figure shows the documentation of the decryptMessage method.

4.2.3.3 SecureLogging class functions

The SecureLogging class’s most important methods are in the SecureLogging.AccountUSecureLog

subclass. They are: isCompleteCorrectSend, isCompleteCorrectForward, isCorrectSenderAnd-

Forwarder.
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1. isCompleteCorrectSend(java.util.List¡java.lang.Integer¿ indexes, int i, java.util.List¡java.lang.Integer¿

anonyms):

Figure 4.16: This figure shows the documentation of the isCompleteCorrectSend method.

2. isCompleteCorrectForward(java.util.List¡java.lang.Integer¿ indexes, int i, java.util.List¡java.lang.Integer¿

anonyms):

Figure 4.17: This figure shows the documentation of the isCompleteCorrectForward method.

3. isCorrectSenderAndForwarder():

Figure 4.18: This figure shows the documentation of the isCorrectSenderAndForwarder
method.

4.3 Conclusion

In this chapter, we explained how to install and configure the code of our Anti-Ego protocol. In

addition to that, we said that it is tested on MAC, Windows and Samsung Galaxy Tab.

After that we talked about the classes, their roles and the methods, all while showing the

respective javadocs of the methods.



Chapter 5

Conclusions

In this technical report, we’ve presented a new message forwarding protocol for rational and

Byzantine behaviors. The problem is that when selfish nodes have scarce resources, they tend

to drop messages which disrupts the whole message forwarding process. This way, they save

resources.

This led us to create the Anti-Ego protocol, which has the purpose of forcing any contributing

node in message forwarding, in a peer-to-peer system, not to discard forwarding others messages

(to save resources like energy, CPU and network bandwidth).

The main idea is to forward the message through a chain of nodes from the source to destination

where each node sends the message to its successor in two round-trips: the first round-trip hides

the destination of the message (using encryption) and the second sends the decryption key. In

this way, the receiver won’t be able to deny the message if it is not the destination, since the

preceding node holds a proof that it received this message. This simplifies tracking rational

(selfish) nodes and evicting them.

State-of-the-art protocols, as discussed in Chapter 2, did not completely solve the problem. For

instance, Epidemic Routing[7] and Give2Get[4] were the closest protocols to Anti-Ego. Epidemic

Routing solved the message forwarding problem in networks with rational behaviors only. But

the problem persisted in networks with non-rational behaviors. Give2Get solves the problem in

non-rational networks but with the restriction that it only works in closed area indoor networks.

We expect that from the results of the Give2Get experimentation. Give2Get inspired us in hiding

the destination of our message. Another inspiration was PeerReview[5], which we imitated in

the use of the secure log.

As for most difficult thing we faced, a selfish node might refuse to send Anonym if it only wants

to validate trying to minimize its storage by deleting log entries.

Our protocol filled lots of gaps by introducing accountability which is an alternative solution

through instant misbehavior detection. The accountability is done using secure logs with reduced

resource requirements and complexity. Another thing that we added was anonymous messaging.

27
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Message forwarding proved to be a critical topic in mobile ad hoc networks. It is critical because

the sender of the message is never in range, doesn’t know where the receiver is currently located

or the best route to follow.

In the future, we plan to improve the documentation of the code to make it more understandable.

In addition to that, we plan to write test scenarios and experiment the protocol using ONE

simulator (some of them are already implemented in the ”simulation” folder). Finally, we plan

to review the code and improve it to find mistakes overlooked in the initial development phase.

However, we won’t implement this program on a testbed but we strongly encourage people to

do so, because it yields really accurate testing results.
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